利用函数的奇偶性和周期性可画出函数的图象,利用数形结合的思想解答.由已知需要先画出函数在[0,1]上的图象,再利用奇偶性画出在[-1,0]上的图象,利用周期性可画出在区间[-1,3]内的函数图象,即可解答本题.
【解析】
由已知可画出函数f(x)的图象,先画出f(x)在x∈[0,1]上的图象,利用偶函数画出
在x∈[-1,0]上的图象,再利用函数的周期性画出R上的图象,下面画出的是函数在x∈[-1,3]上
的图象,如图:
又可知关于x的方程y=kx+k+1(k≠1)恒过点(-1,1),在上图中画出直线L,L1,L2,显然当这些过定点(-1,1)
的直线位于L与L2之间如L1时,才能与函数f(x)有四个交点;又因为直线L与L2的斜率为k=0和k2=,因此k的
取值范围应为:
故答案为: