满分5 > 高中数学试题 >

如图所示是一个几何体的直观图、正视图、俯视图、侧视图(其中正视图为直角梯形,俯视...

如图所示是一个几何体的直观图、正视图、俯视图、侧视图(其中正视图为直角梯形,俯视图为正方形,侧视图为直角三角形,尺寸如图所示).
(1)求四棱锥P-ABCD的体积;
(2)证明:BD∥平面PEC;
(3)若G为BC上的动点,求证:AE⊥PG.
manfen5.com 满分网

manfen5.com 满分网
(1)结合三视图,得到几何体的相关棱长,求四棱锥P-ABCD的底面面积和高,然后求出体积; (2)连接AC交BD于O点,取PC中点F,连接OF,要证明BD∥平面PEC,只需证明BD平行平面PEC内的直线EF即可; (3)连接BP,要证AE⊥PG,只需证明AE⊥平面PBG,即可证明AE⊥PG. 【解析】 (1)由几何体的三视图可知,底面ABCD是边长为4的正方形,PA⊥平面ABCD,PA∥EB,且PA=4,BE=2,AB=AD=CD=CB=4, ∴VP-ABCD=PA×SABCD=×4×4×4=. (2)证明:连接AC交BD于O点, 取PC中点F,连接OF, ∵EB∥PA,且EB=PA, 又OF∥PA,且OF=PA, ∴EB∥OF,且EB=OF, ∴四边形EBOF为平行四边形, ∴EF∥BD. 又EF⊂平面PEC,BD⊄平面PEC,所以BD∥平面PEC. (3)连接BP,∵==,∠EBA=∠BAP=90°, ∴△EBA∽△BAP,∴∠PBA=∠BEA, ∴∠PBA+∠BAE=∠BEA+∠BAE=90°, ∴PB⊥AE. 又∵BC⊥平面APEB,∴BC⊥AE, ∴AE⊥平面PBG,∴AE⊥PG.
复制答案
考点分析:
相关试题推荐
如下图,在四棱锥P-ABCD中,底面为正方形,PC与底面ABCD垂直(图1),图2为该四棱锥的主视图和侧视图,它们是腰长为6cm的全等的等腰直角三角形.
(Ⅰ)根据图2所给的主视图、侧视图画出相应的俯视图,并求出该俯视图所在的平面
图形的面积.
(Ⅱ)图3中,E为棱PB上的点,F为底面对角线AC上的点,且manfen5.com 满分网,求证:EF∥平面PDA.
manfen5.com 满分网manfen5.com 满分网
查看答案
在正四棱锥P-ABCD中,PA=2,直线PA与平面ABCD所成的角为60°,求正四棱锥P-ABCD的体积V.
manfen5.com 满分网
查看答案
如图,已知点P在圆柱OO1的底面圆O上,AB、A1B1分别为圆O、圆O1的直径且A1A⊥平面PAB.
(1)求证:BP⊥A1P;
(2)若圆柱OO1的体积V=12π,OA=2,∠AOP=120°,求三棱锥A1-APB的体积.

manfen5.com 满分网 查看答案
如图所示,四棱锥P-ABCD的底面是一直角梯形,AB∥CD,CD=2AB,E为PC的中点,则BE与平面PAD的位置关系为    
manfen5.com 满分网 查看答案
在空间四边形ABCD中,AC和BD为对角线,G为△ABC的重心,E是BD上一点,BE=3ED,以{manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网}为基底,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.