满分5 > 高中数学试题 >

如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2,E、F分别是A...

manfen5.com 满分网如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2manfen5.com 满分网,E、F分别是AB、PD的中点.
(1)求证:AF∥平面PCE;
(2)求证:平面PCE⊥平面PCD;
(3)求四面体PEFC的体积.
(1)设G为PC的中点,连接FG,EG,根据中位线定理得到FGCD,AECD,进而可得到AF∥GE,再由线面平行的判定定理可证明AF∥平面PCE,得证. (2)根据PA=AD=2可得到AF⊥PD,再由线面垂直的性质定理可得到PA⊥CD,然后由AD⊥CD结合线面垂直的判定定理得到CD⊥平面PAD,同样得到GE⊥平面PCD,再由面面垂直的判定定理可得证. (3)先由(2)可得知EG为四面体PEFC的高,进而求出S△PCF,根据棱锥的体积公式可得到答案. 【解析】 (1)证明:设G为PC的中点,连接FG,EG, ∵F为PD的中点,E为AB的中点, ∴FGCD,AECD ∴FGAE,∴AF∥GE ∵GE⊂平面PEC, ∴AF∥平面PCE;   (2)证明:∵PA=AD=2,∴AF⊥PD 又∵PA⊥平面ABCD,CD⊂平面ABCD, ∴PA⊥CD,∵AD⊥CD,PA∩AD=A, ∴CD⊥平面PAD, ∵AF⊂平面PAD,∴AF⊥CD. ∵PD∩CD=D,∴AF⊥平面PCD, ∴GE⊥平面PCD, ∵GE⊂平面PEC, ∴平面PCE⊥平面PCD; (3)由(2)知,GE⊥平面PCD, 所以EG为四面体PEFC的高, 又GF∥CD,所以GF⊥PD, EG=AF=,GF=CD=, S△PCF=PD•GF=2. 得四面体PEFC的体积V=S△PCF•EG=.
复制答案
考点分析:
相关试题推荐
如图所示是一个几何体的直观图、正视图、俯视图、侧视图(其中正视图为直角梯形,俯视图为正方形,侧视图为直角三角形,尺寸如图所示).
(1)求四棱锥P-ABCD的体积;
(2)证明:BD∥平面PEC;
(3)若G为BC上的动点,求证:AE⊥PG.
manfen5.com 满分网

manfen5.com 满分网 查看答案
如下图,在四棱锥P-ABCD中,底面为正方形,PC与底面ABCD垂直(图1),图2为该四棱锥的主视图和侧视图,它们是腰长为6cm的全等的等腰直角三角形.
(Ⅰ)根据图2所给的主视图、侧视图画出相应的俯视图,并求出该俯视图所在的平面
图形的面积.
(Ⅱ)图3中,E为棱PB上的点,F为底面对角线AC上的点,且manfen5.com 满分网,求证:EF∥平面PDA.
manfen5.com 满分网manfen5.com 满分网
查看答案
在正四棱锥P-ABCD中,PA=2,直线PA与平面ABCD所成的角为60°,求正四棱锥P-ABCD的体积V.
manfen5.com 满分网
查看答案
如图,已知点P在圆柱OO1的底面圆O上,AB、A1B1分别为圆O、圆O1的直径且A1A⊥平面PAB.
(1)求证:BP⊥A1P;
(2)若圆柱OO1的体积V=12π,OA=2,∠AOP=120°,求三棱锥A1-APB的体积.

manfen5.com 满分网 查看答案
如图所示,四棱锥P-ABCD的底面是一直角梯形,AB∥CD,CD=2AB,E为PC的中点,则BE与平面PAD的位置关系为    
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.