如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2
,E、F分别是AB、PD的中点.
(1)求证:AF∥平面PCE;
(2)求证:平面PCE⊥平面PCD;
(3)求四面体PEFC的体积.
考点分析:
相关试题推荐
如图所示是一个几何体的直观图、正视图、俯视图、侧视图(其中正视图为直角梯形,俯视图为正方形,侧视图为直角三角形,尺寸如图所示).
(1)求四棱锥P-ABCD的体积;
(2)证明:BD∥平面PEC;
(3)若G为BC上的动点,求证:AE⊥PG.
查看答案
如下图,在四棱锥P-ABCD中,底面为正方形,PC与底面ABCD垂直(图1),图2为该四棱锥的主视图和侧视图,它们是腰长为6cm的全等的等腰直角三角形.
(Ⅰ)根据图2所给的主视图、侧视图画出相应的俯视图,并求出该俯视图所在的平面
图形的面积.
(Ⅱ)图3中,E为棱PB上的点,F为底面对角线AC上的点,且
,求证:EF∥平面PDA.
查看答案
在正四棱锥P-ABCD中,PA=2,直线PA与平面ABCD所成的角为60°,求正四棱锥P-ABCD的体积V.
查看答案
如图,已知点P在圆柱OO
1的底面圆O上,AB、A
1B
1分别为圆O、圆O
1的直径且A
1A⊥平面PAB.
(1)求证:BP⊥A
1P;
(2)若圆柱OO
1的体积V=12π,OA=2,∠AOP=120°,求三棱锥A
1-APB的体积.
查看答案
如图所示,四棱锥P-ABCD的底面是一直角梯形,AB∥CD,CD=2AB,E为PC的中点,则BE与平面PAD的位置关系为
.
查看答案