满分5 > 高中数学试题 >

如图所示,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=,∠ABC=...

manfen5.com 满分网如图所示,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=manfen5.com 满分网,∠ABC=60°.
(1)证明:AB⊥A1C;
(2)求二面角A-A1C-B的余弦值.
(1)欲证AB⊥A1C,而A1C⊂平面ACC1A1,可先证AB⊥平面ACC1A1,根据三棱柱ABC-A1B1C1为直三棱柱,可知AB⊥AA1,由正弦定理得AB⊥AC,满足线面垂直的判定定理所需条件; (2)作AD⊥A1C交A1C于D点,连接BD,由三垂线定理知BD⊥A1C,则∠ADB为二面角A-A1C-B的平面角,在Rt△BAD中,求出二面角A-A1C-B的余弦值即可. 【解析】 (1)证明:∵三棱柱ABC-A1B1C1为直三棱柱,∴AB⊥AA1,在△ABC中,AB=1,AC=,∠ABC=60°,由正弦定理得∠ACB=30°, ∴∠BAC=90°,即AB⊥AC, ∴AB⊥平面ACC1A1, 又A1C⊂平面ACC1A1, ∴AB⊥A1C. (2)如图,作AD⊥A1C交A1C于D点,连接BD, 由三垂线定理知BD⊥A1C, ∴∠ADB为二面角A-A1C-B的平面角. 在Rt△AA1C中,AD===, 在Rt△BAD中,tan∠ADB==, ∴cos∠ADB=, 即二面角A-A1C-B的余弦值为.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2manfen5.com 满分网,E、F分别是AB、PD的中点.
(1)求证:AF∥平面PCE;
(2)求证:平面PCE⊥平面PCD;
(3)求四面体PEFC的体积.
查看答案
如图所示是一个几何体的直观图、正视图、俯视图、侧视图(其中正视图为直角梯形,俯视图为正方形,侧视图为直角三角形,尺寸如图所示).
(1)求四棱锥P-ABCD的体积;
(2)证明:BD∥平面PEC;
(3)若G为BC上的动点,求证:AE⊥PG.
manfen5.com 满分网

manfen5.com 满分网 查看答案
如下图,在四棱锥P-ABCD中,底面为正方形,PC与底面ABCD垂直(图1),图2为该四棱锥的主视图和侧视图,它们是腰长为6cm的全等的等腰直角三角形.
(Ⅰ)根据图2所给的主视图、侧视图画出相应的俯视图,并求出该俯视图所在的平面
图形的面积.
(Ⅱ)图3中,E为棱PB上的点,F为底面对角线AC上的点,且manfen5.com 满分网,求证:EF∥平面PDA.
manfen5.com 满分网manfen5.com 满分网
查看答案
在正四棱锥P-ABCD中,PA=2,直线PA与平面ABCD所成的角为60°,求正四棱锥P-ABCD的体积V.
manfen5.com 满分网
查看答案
如图,已知点P在圆柱OO1的底面圆O上,AB、A1B1分别为圆O、圆O1的直径且A1A⊥平面PAB.
(1)求证:BP⊥A1P;
(2)若圆柱OO1的体积V=12π,OA=2,∠AOP=120°,求三棱锥A1-APB的体积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.