(1)由题设条件知若p=1时,a1=a2,与已知矛盾,故p≠1.则a1=0.n=2时,(2p-1)a2=0.所以p=.
(2)由题设条件知=.则=,=.由此可知{an}是以a2为公差,以a1为首项的等差数列.
【解析】
(1)当n=1时,a1=pa1,若p=1时,a1+a2=2pa2=2a2,
∴a1=a2,与已知矛盾,故p≠1.则a1=0.
当n=2时,a1+a2=2pa2,∴(2p-1)a2=0.
∵a1≠a2,故p=.
(2)由已知Sn=nan,a1=0.
n≥2时,an=Sn-Sn-1=nan-(n-1)an-1.
∴=.则=,=.
∴=n-1.∴an=(n-1)a2,an-an-1=a2.
故{an}是以a2为公差,以a1为首项的等差数列.