(Ⅰ)根据导数的几何意义即为点的斜率,对函数y=e-x(x≥0)在点M(t,c-1c)进行求导,然后根据电斜式求出切线方程;
(Ⅱ)根据三角形面积公式用t表示出S(t),然后由题意先对函数S进行求导,解出极值点,然后再根据函数的定义域,
把极值点代入已知函数,从而求解.
【解析】
(Ⅰ)因为f'(x)=(e-x)'=-e-x,
所以切线l的斜率为-e-1,
故切线l的方程为y-e-t=-e-t(x-t).
即e-tx+y-e-1(t+1)=0
(Ⅱ)令y=0得x=t+1,
又令x=0得y=e-t(t+1)
所以S(t)=
=
从而
∵当t∈(0,1)时,S'(t)>0,
当t∈(1,+∞)时,S'(t)<0,
所以S(t)的最大值为S(1)=.