满分5 > 高中数学试题 >

已知函数f(x)=ln(1+x)-x,g(x)=xlnx. (Ⅰ)求函数f(x)...

已知函数f(x)=ln(1+x)-x,g(x)=xlnx.
(Ⅰ)求函数f(x)的最大值;
(Ⅱ)设0<a<b,证明0<g(a)+g(b)-2g(manfen5.com 满分网)<(b-a)ln2.
(1)先求出函数的定义域,然后对函数进行求导运算,令导函数等于0求出x的值,再判断函数的单调性,进而可求出最大值. (2)先将a,b代入函数g(x)得到g(a)+g(b)-2g()的表达式后进行整理,根据(1)可得到lnx<x,将、放缩变形为、代入即可得到左边不等式成立,再用根据y=lnx的单调性进行放缩<.然后整理即可证明不等式右边成立. (Ⅰ)【解析】 函数f(x)的定义域为(-1,+∞). .令f′(x)=0,解得x=0. 当-1<x<0时,f′(x)>0,当x>0时,f′(x)<0.又f(0)=0, 故当且仅当x=0时,f(x)取得最大值,最大值为0. (Ⅱ)证明: =. 由(Ⅰ)结论知ln(1+x)-x<0(x>-1,且x≠0), 由题设, 因此, , 所以. 又, <.=(b-a)ln<(b-a)ln2 综上.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时f(x)取得极值-2.
(1)求f(x)的单调区间和极大值;
(2)证明对任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立.
查看答案
已知f(x)=manfen5.com 满分网在区间[-1,1]上是增函数.
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=manfen5.com 满分网的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
查看答案
已知b>-1,c>0,函数f(x)=x+b的图象与函数g(x)=x2+bx+c的图象相切.
(Ⅰ)求b与c的关系式(用c表示b);
(Ⅱ)设函数F(x)=f(x)g(x)在(-∞,+∞)内有极值点,求c的取值范围.
查看答案
设曲线y=e-x(x≥0)在点M(t,c-1c)处的切线l与x轴y轴所围成的三角表面积为S(t).
(Ⅰ)求切线l的方程;
(Ⅱ)求S(t)的最大值.
查看答案
已知a>0,n为正整数.
(Ⅰ)设y=(x-a)n,证明y′=n(x-a)n-1
(Ⅱ)设fn(x)=xn-(x-a)n,对任意n≥a,证明fn+1′(n+1)>(n+1)fn′(n).
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.