登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
已知数列{an}满足a1=33,an+1-an=2n,则的最小值为 .
已知数列{a
n
}满足a
1
=33,a
n+1
-a
n
=2n,则
的最小值为
.
由累加法求出an=33+n2-n,所以,设f(n)=,由此能导出n=5或6时f(n)有最小值.借此能得到的最小值. 【解析】 an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=2[1+2+…+(n-1)]+33=33+n2-n 所以 设f(n)=,令f′(n)=, 则f(n)在上是单调递增,在上是递减的, 因为n∈N+,所以当n=5或6时f(n)有最小值. 又因为,, 所以的最小值为
复制答案
考点分析:
相关试题推荐
设S
n
为等差数列{a
n
}的前n项和,若S
3
=3,S
6
=24,则a
9
=
.
查看答案
上一个n级台阶,若每步可上一级或两级,设上法总数为f(n),则下列猜想中正确的是( )
A.f(n)=n
B.f(n)=f(n-1)+f(n-2)
C.f(n)=f(n-1)•f(n-2)
D.f(n)=
查看答案
用数学归纳法证明“1+
+
+…+
<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是( )
A.2
k-1
B.2
k
-1
C.2
k
D.2
k
+1
查看答案
等差数列{a
n
}的公差不为零,首项a
1
=1,a
2
是a
1
和a
5
的等比中项,则数列{a
n
}的前10项之和是( )
A.90
B.100
C.145
D.190
查看答案
设等差数列{a
n
}的前n项和为S
n
,若S
3
=9,S
6
=36,则a
7
+a
8
+a
9
=( )
A.63
B.45
C.36
D.27
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.