满分5 > 高中数学试题 >

若数列{an}满足:对任意的n∈N﹡,只有有限个正整数m使得am<n成立,记这样...

若数列{an}满足:对任意的n∈N,只有有限个正整数m使得am<n成立,记这样的m的个数为(an+,则得到一个新数列{(an+}.例如,若数列{an}是1,2,3…,n,…,则数列{(an+}是0,1,2,…,n-1…已知对任意的n∈N+,an=n2,则(a5+=    ,((an++=   
根据题意,若am<5,而an=n2,知m=1,2,∴(a5)+=2,由题设条件可知((a1)+)+=1,((a2)+)+=4,((a3)+)+=9,((a4)+)+=16,于是猜想:((an)+)+=n2. 【解析】 ∵am<5,而an=n2,∴m=1,2,∴(a5)+=2. ∵(a1)+=0,(a2)+=1,(a3)+=1,(a4)+=1, (a5)+=2,(a6)+=2,(a7)+=2,(a8)+=2,(a9)+=2, (a10)+=3,(a11)+=3,(a12)+=3,(a13)+=3,(a14)+=3,(a15)+=3,(a16)+=3, ∴((a1)+)+=1,((a2)+)+=4,((a3)+)+=9,((a4)+)+=16, 猜想:((an)+)+=n2. 答案:2,n2.
复制答案
考点分析:
相关试题推荐
设{an}是等比数列,公比manfen5.com 满分网,Sn为{an}的前n项和.记manfen5.com 满分网.设manfen5.com 满分网为数列{Tn}的最大项,则n=    查看答案
在如下数表中,已知每行、每列中的树都成等差数列,那么,位于下表中的第n行第n+1列的数是   
第1列第2列第3列
第1行123
第2行246
第3行369
查看答案
已知数列{an}满足a1=33,an+1-an=2n,则manfen5.com 满分网的最小值为    查看答案
设Sn为等差数列{an}的前n项和,若S3=3,S6=24,则a9=    查看答案
上一个n级台阶,若每步可上一级或两级,设上法总数为f(n),则下列猜想中正确的是( )
A.f(n)=n
B.f(n)=f(n-1)+f(n-2)
C.f(n)=f(n-1)•f(n-2)
D.f(n)=manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.