满分5 > 高中数学试题 >

设数列{an}满足:a1+2a2+3a3+…+nan=2n(n∈N*). (1)...

设数列{an}满足:a1+2a2+3a3+…+nan=2n(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=n2an,求数列{bn}的前n项和Sn
(1)根据题意,可得a1+2a2+3a3++(n-1)an-1=2n-1,两者相减,可得数列{an}的通项公式. (2)根据题意,求出bn的通项公式,继而求出数列{bn}的前n项和Sn. 【解析】 (1)∵a1+2a2+3a3+…+nan=2n①, ∴n≥2时,a1+2a2+3a3+…+(n-1)an-1=2n-1② ①-②得nan=2n-1,an=(n≥2),在①中令n=1得a1=2, ∴an= (2)∵bn=. 则当n=1时,S1=2 ∴当n≥2时,Sn=2+2×2+3×22+…+n×2n-1 则2Sn=4+2×22+3×23+…+(n-1)•2n-1+n•2n 相减得Sn=n•2n-(2+22+23+…+2n-1)=(n-1)2n+2(n≥2) 又S1=2,符合Sn的形式, ∴Sn=(n-1)•2n+2(n∈N*)
复制答案
考点分析:
相关试题推荐
设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列manfen5.com 满分网是公差为d的等差数列.
(1)求数列{an}的通项公式(用n,d表示);
(2)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式Sm+Sn>cSk都成立.求证:c的最大值为manfen5.com 满分网
查看答案
数列{an}(n∈N*)中,a1=a,an+1是函数manfen5.com 满分网的极小值点.
(Ⅰ)当a=0时,求通项an
(Ⅱ)是否存在a,使数列{an}是等比数列?若存在,求a的取值范围;若不存在,请说明理由.
查看答案
已知等差数列{an}满足:a3=7,a5+a7=26.{an}的前n项和为Sn
(Ⅰ)求an及Sn
(Ⅱ)令manfen5.com 满分网(n∈N*),求数列{bn}的前n项和Tn
查看答案
在数列{an}中,a1=0,且对任意k∈N*.a2k-1,a2k,a2k+1成等差数列,其公差为dk
(Ⅰ)若dk=2k,证明a2k,a2k+1,a2k+2成等比数列(k∈N*
(Ⅱ)若对任意k∈N*,a2k,a2k+1,a2k+2成等比数列,其公比为qk
查看答案
在数列{an}中,a1=0,且对任意k∈N*,a2k-1,a2k,a2k+1成等差数列,其公差为2k.
(Ⅰ)证明a4,a5,a6成等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)记manfen5.com 满分网,证明manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.