满分5 > 高中数学试题 >

知等差数列{an}的前n项和为Sn,且a3=5,S15=225. (Ⅰ)求数列{...

知等差数列{an}的前n项和为Sn,且a3=5,S15=225.
(Ⅰ)求数列{an}的通项an
(Ⅱ)设bn=manfen5.com 满分网+2n,求数列{bn}的前n项和Tn
(Ⅰ)设出等差数列的首项和等差,根据等差数列的通项公式及前n项和的公式把已知条件a3=5,S15=225化简,得到关于首项和公差的两个关系式,联立两个关系式即可求出首项和公差,根据首项和公差写出数列的通项公式即可; (Ⅱ)把求出的通项公式an代入bn=+2n中,得到bn的通项公式,然后列举出数列的各项,分别利用等差数列及等比数列的前n项和的公式化简后得到数列{bn}的前n项和Tn的通项公式. 【解析】 (Ⅰ)设等差数列{an}首项为a1,公差为d, 由题意,得, 解得, ∴an=2n-1; (Ⅱ), ∴Tn=b1+b2+…+bn=(4+42+…+4n)+2(1+2+…+n) ==.
复制答案
考点分析:
相关试题推荐
设数列{an}满足:a1+2a2+3a3+…+nan=2n(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=n2an,求数列{bn}的前n项和Sn
查看答案
设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列manfen5.com 满分网是公差为d的等差数列.
(1)求数列{an}的通项公式(用n,d表示);
(2)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式Sm+Sn>cSk都成立.求证:c的最大值为manfen5.com 满分网
查看答案
数列{an}(n∈N*)中,a1=a,an+1是函数manfen5.com 满分网的极小值点.
(Ⅰ)当a=0时,求通项an
(Ⅱ)是否存在a,使数列{an}是等比数列?若存在,求a的取值范围;若不存在,请说明理由.
查看答案
已知等差数列{an}满足:a3=7,a5+a7=26.{an}的前n项和为Sn
(Ⅰ)求an及Sn
(Ⅱ)令manfen5.com 满分网(n∈N*),求数列{bn}的前n项和Tn
查看答案
在数列{an}中,a1=0,且对任意k∈N*.a2k-1,a2k,a2k+1成等差数列,其公差为dk
(Ⅰ)若dk=2k,证明a2k,a2k+1,a2k+2成等比数列(k∈N*
(Ⅱ)若对任意k∈N*,a2k,a2k+1,a2k+2成等比数列,其公比为qk
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.