满分5 > 高中数学试题 >

在等比数列{an}中,an>0(n∈N*),公比q∈(0,1),且a3+a5=5...

在等比数列{an}中,an>0(n∈N*),公比q∈(0,1),且a3+a5=5,又a3与a5的等比中项为2.
(1)求数列{an}的通项公式;
(2)设bn=5-log2an,数列{bn}的前n项和为Sn,求数列{Sn}的通项公式;
(3)设Tn=manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网,求Tn
(1)直接利用a3+a5=5,以及a3与a5的等比中项为2即可求出a3和a5,进而求出数列{an}的通项公式; (2)先把(1)的结论代入整理出数列{bn}的通项公式,得数列{bn}为等差数列,再代入等差数列的求和公式即可; (3)先利用(2)的结论知==2(-),再代入求和即可. 【解析】 (1)an>0,∴a3+a5=5,又a3与a5的等比中项为2,∴a3a5=4,而q∈(0,1), ∴a3>a5,∴a3=4,a5=1,∴q=,a1=16, ∴an=16×=25-n; (2)bn=5-log2an=5-(5-n)=n,∴bn+1-bn=1, ∴{bn}是以b1=1为首项,1为公差的等差数列. ∴Sn=; (3)由(2)知==2(-) ∴Tn=+++=2[(1-)+(-)++(-)=2(1-)=;
复制答案
考点分析:
相关试题推荐
数列an中,a1=-3,an=2an-1+2n+3(n≥2且n∈N*).
(1)求a2,a3的值;
(2)设manfen5.com 满分网,证明{bn }是等差数列;
(3)求数列{an}的前n项和Sn
查看答案
知等差数列{an}的前n项和为Sn,且a3=5,S15=225.
(Ⅰ)求数列{an}的通项an
(Ⅱ)设bn=manfen5.com 满分网+2n,求数列{bn}的前n项和Tn
查看答案
设数列{an}满足:a1+2a2+3a3+…+nan=2n(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=n2an,求数列{bn}的前n项和Sn
查看答案
设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列manfen5.com 满分网是公差为d的等差数列.
(1)求数列{an}的通项公式(用n,d表示);
(2)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式Sm+Sn>cSk都成立.求证:c的最大值为manfen5.com 满分网
查看答案
数列{an}(n∈N*)中,a1=a,an+1是函数manfen5.com 满分网的极小值点.
(Ⅰ)当a=0时,求通项an
(Ⅱ)是否存在a,使数列{an}是等比数列?若存在,求a的取值范围;若不存在,请说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.