(1)直接利用a3+a5=5,以及a3与a5的等比中项为2即可求出a3和a5,进而求出数列{an}的通项公式;
(2)先把(1)的结论代入整理出数列{bn}的通项公式,得数列{bn}为等差数列,再代入等差数列的求和公式即可;
(3)先利用(2)的结论知==2(-),再代入求和即可.
【解析】
(1)an>0,∴a3+a5=5,又a3与a5的等比中项为2,∴a3a5=4,而q∈(0,1),
∴a3>a5,∴a3=4,a5=1,∴q=,a1=16,
∴an=16×=25-n;
(2)bn=5-log2an=5-(5-n)=n,∴bn+1-bn=1,
∴{bn}是以b1=1为首项,1为公差的等差数列.
∴Sn=;
(3)由(2)知==2(-)
∴Tn=+++=2[(1-)+(-)++(-)=2(1-)=;