满分5 > 高中数学试题 >

已知f(x)=ax3+bx2+cx在区间[0,1]上是增函数,在区间(-∞,0)...

已知f(x)=ax3+bx2+cx在区间[0,1]上是增函数,在区间(-∞,0),(1,+∞)上是减函数,又manfen5.com 满分网
(Ⅰ)求f(x)的解析式;
(Ⅱ)若在区间[0,m](m>0)上恒有f(x)≤x成立,求m的取值范围.
(Ⅰ)由“f(x)在区间[0,1]上是增函数,在区间(-∞,0),(1,+∞)上是减函数”,则有f'(0)=f'(1)=0,再由 .求解. (Ⅱ)首先将“f(x)≤x,x∈[0,m]成立”转化为“x(2x-1)(x-1)≥0,x∈[0,m]成立”求解. 【解析】 (Ⅰ)f'(x)=3ax2+2bx+c,由已知f'(0)=f'(1)=0, 即 解得 ∴f'(x)=3ax2-3ax, ∴, ∴a=-2, ∴f(x)=-2x3+3x2. (Ⅱ)令f(x)≤x,即-2x3+3x2-x≤0, ∴x(2x-1)(x-1)≥0, ∴或x≥1. 又f(x)≤x在区间[0,m]上恒成立, ∴.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网在曲线y=f(x)的所有切线中,有且仅有一条切线l与直线y=x垂直.
(Ⅰ)求a的值和切线l的方程;
(Ⅱ)设曲线y=f(x)上任一点处的切线的倾斜角为θ,求θ的取值范围.
查看答案
已知点P(2,2)在曲线y=ax3+bx上,如果该曲线在点P处切线的斜率为9,那么(i)ab=   
(ii)函数f(x)=ax3+bx,manfen5.com 满分网的值域为    查看答案
已知实数a≠0,函数f(x)=ax(x-2)2(x∈R)有极大值32,则实数a的值为    查看答案
若函数f(x)=x3-mx2+2m2-5的单调递减区间为(-9,0),则m=    查看答案
已知拋物线y=ax2+bx+c经过点(1,1),且在点(2,-1)处的切线的斜率为1,则a,b,c的值分别为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.