满分5 > 高中数学试题 >

抛物线y2=24ax(a>0)上有一点M,它的横坐标是3,它到焦点的距离是5,则...

抛物线y2=24ax(a>0)上有一点M,它的横坐标是3,它到焦点的距离是5,则抛物线的方程为( )
A.y2=8
B.y2=12
C.y2=16
D.y2=20
利用抛物线的定义可得3+6a=5,从而可求a的值及抛物线方程 【解析】 由题意知,3+6a=5, ∴a=, ∴抛物线方程为y2=8x. 故选A
复制答案
考点分析:
相关试题推荐
已知函数f(x)=-x3-ax2+b2x+1(a、b∈R).
(1)若a=1,b=1,求f(x)的极值和单调区间;
(2)已知x1,x2为f(x)的极值点,且|f(x1)-f(x2)|=manfen5.com 满分网|x1-x2|,若当x∈[-1,1]时,函数y=f(x)的图象上任意一点的切线斜率恒小于m,求m的取值范围.
查看答案
设a为实常数,函数f(x)=-x3+ax2-4.
(1)若函数y=f(x)的图象在点P(1,f(1))处的切线的倾斜角为manfen5.com 满分网,求函数f(x)的单调区间;
(2)若存在x∈(0,+∞),使f(x)>0,求a的取值范围.
查看答案
已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x-y+1=0,当x=manfen5.com 满分网时,y=f(x)有极值.
(1)求a、b、c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
查看答案
已知函数f(x)=manfen5.com 满分网x3-manfen5.com 满分网x2+bx+a(a,b∈R),且其导函数f′(x)的图象过原点.
(1)若存在x<0,使得f′(x)=-9,求a的最大值;
(2)当a>0时,求函数f(x)的极值.
查看答案
已知f(x)=ax3+bx2+cx在区间[0,1]上是增函数,在区间(-∞,0),(1,+∞)上是减函数,又manfen5.com 满分网
(Ⅰ)求f(x)的解析式;
(Ⅱ)若在区间[0,m](m>0)上恒有f(x)≤x成立,求m的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.