欲证明x4+y4>x3y+xy3.根据比较法,只需证明:(a4+b4)-(a2b3+a3b2)>0,即可,结合因式分解即可证得.
证明:(a4+b4)-(a2b3+a3b2)=( a5-a3b2)+(b5-a2b3)
=a3(a2-b2)-b3(a2-b2)=(a2-b2) (a3-b3)
=(a+b)(a-b)2(a2+ab+b2)
∵a,b都是正数,∴a+b,a2+ab+b2>0
又∵a⊃1;b,∴(a-b)2>0∴(a+b)(a-b)2(a2+ab+b2)>0
即:a5+b5>a2b3+a3b2