满分5 > 高中数学试题 >

已知直线x+ky-3=0所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到点...

已知直线x+ky-3=0所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到点F的最大距离为8.
(1)求椭圆C的标准方程;
(2)已知圆O:x2+y2=1,直线l:mx+ny=1.试证明:当点P(m,n)在椭圆C上运动时,直线l与圆O恒相交,并求直线l被圆O所截得的弦长L的取值范围.
(1)由x+ky-3=0得,(x-3)+ky=0,所以F为(3,0).由题设知,由此可求出椭圆C的方程. (2)因为点P(m,n)在椭圆C上运动,所以+=1.从而圆心O到直线l的距离d===<1.由此可求出直线l被圆O截得的弦长的取值范围. 【解析】 (1)由x+ky-3=0得,(x-3)+ky=0, 所以直线过定点(3,0),即F为(3,0). 设椭圆C的方程为+=1(a>b>0), 则解得 故所求椭圆C的方程为+=1. (2)因为点P(m,n)在椭圆C上运动,所以+=1. 从而圆心O到直线l的距离 d===<1. 所以直线l与圆O恒相交. 又直线l被圆O截得的弦长 L=2=2=2,由于0≤m2≤25, 所以16≤m2+16≤25,则L∈[,], 即直线l被圆O截得的弦长的取值范围是[,].
复制答案
考点分析:
相关试题推荐
设实数x,y同时满足条件:4x2-9y2=36,且xy<0.
(1)求函数y=f(x)的解析式和定义域;
(2)判断函数y=f(x)的奇偶性,并证明.
查看答案
如图,A、B是单位圆O上的动点,C是圆与x轴正半轴的交点,设∠COA=α.
(1)当点A的坐标为manfen5.com 满分网时,求sinα的值;
(2)若manfen5.com 满分网,且当点A、B在圆上沿逆时针方向移动时,总有manfen5.com 满分网,试求BC的取值范围.

manfen5.com 满分网 查看答案
已知manfen5.com 满分网,则tanα=    查看答案
若向量manfen5.com 满分网manfen5.com 满分网满足manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网的夹角为manfen5.com 满分网,则manfen5.com 满分网=    查看答案
已知函数f(x)的定义域为[-2,+∞),部分对应值如下左表,f′(x)为f(x)的导函数,函数y=f′(x)的图象如图所示,若两正数a,b满足f(2a+b)<1,则manfen5.com 满分网的取值范围是   
x-24
f(x)1-11

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.