已知a是实数,函数f(x)=x
2(x-a).
(Ⅰ)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)在区间[0,2]上的最大值.
考点分析:
相关试题推荐
已知集合A={x|x
2-2x-3≤0,x∈R},B={x|x
2-2mx+m
2-4≤0,x∈R,m∈R}.
(1)若A∩B=[0,3],求实数m的值;
(2)若A⊆∁
RB,求实数m的取值范围.
查看答案
在几何体ABCDE中,∠BAC=
,DC⊥平面ABC,EB⊥平面ABC,F是BC的中点,AB=AC=BE=2,CD=1
(1)求证:DC∥平面ABE;
(2)求证:AF⊥平面BCDE;
(3)求证:平面AFD⊥平面AFE.
查看答案
已知向量
,令f(x)=
,
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)当
时,求函数f(x)的值域.
查看答案
已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+
,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使得DE⊥EC.
(1)求证:BC⊥面CDE;
(2)求证:FG∥面BCD.
查看答案
已知直线x+ky-3=0所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到点F的最大距离为8.
(1)求椭圆C的标准方程;
(2)已知圆O:x
2+y
2=1,直线l:mx+ny=1.试证明:当点P(m,n)在椭圆C上运动时,直线l与圆O恒相交,并求直线l被圆O所截得的弦长L的取值范围.
查看答案