满分5 > 高中数学试题 >

设数列{an}、{bn}满足,且,n∈N*. (Ⅰ)求数列{an}的通项公式; ...

设数列{an}、{bn}满足manfen5.com 满分网,且manfen5.com 满分网,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对一切n∈N*,证明manfen5.com 满分网成立;
(Ⅲ)记数列{an2}、{bn}的前n项和分别是An、Bn,证明:2Bn-An<4.
(Ⅰ)由2nan+1=(n+1)an,得,由此可求出数列{an}的通项公式. (Ⅱ)由,知要证明,只需证明ln(1+an)-an<0成立.构造函数f(x)=ln(1+x)-x(x≥0),则,当x>0时,f'(x)<0,故f(x)<f(0)=0.ln(1+an)-an<0对一切n∈N*都成立. (Ⅲ)由2bn-an2=2ln(1+an)<2an,知,利用错位相减求得2Bn-An<4. 【解析】 (Ⅰ)由2nan+1=(n+1)an,得,(1分) 即数列是以为首项,以为公比的等比数列,∴(3分) (Ⅱ)∵, ∴要证明,只需证明2bn<an2+2an, 即证,即证明ln(1+an)-an<0成立.(5分) 构造函数f(x)=ln(1+x)-x(x≥0),(6分) 则,当x>0时,f'(x)<0,即f(x)在(0,+∞)上单调递减, 故f(x)<f(0)=0.∴ln(1+x)-x<0,即ln(1+an)-an<0对一切n∈N*都成立, ∴.(8分) (Ⅲ)∵2bn-an2=2ln(1+an),由(Ⅱ)可知,2bn-an2=2ln(1+an)<2an, ∴2Bn-An<2(a1+a2++an)=2(10分) 利用错位相减求得:,∴2Bn-An<4(12分)
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,存在实数x1,x2满足下列条件:①x1<x2;②f′(x1)=f′(x2)=0;③|x1|+|x2|=2
(1)证明:0<a≤3;(2)求b的取值范围;
(3)若函数h(x)=f′(x)-6a(x-x1),证明:当x1<x<2时|h(x1)|≤12a.
查看答案
如图:已知BB1,CC1是Rt△ABC所在平面同侧的两条相等的斜线段,它们与平面ABC所成的角均为60°,且BB1∥CC1,线段BB1的端点B1在平面ABC的射影M恰是BC的中点,已知BC=2,∠ACB=90°
①求异面直线AB1与BC1所成的角.
②若二面角A-BB1-C的大小为30°,求三棱锥C1-ABC的体积.
③在②的条件下,求直线AB1与平面BCC1B1所成角正切值.

manfen5.com 满分网 查看答案
已知椭圆manfen5.com 满分网的右焦点恰好是抛物线C:y2=4x的焦点F,点A是椭圆E的右顶点.过点A的直线l交抛物线C于M,N两点,满足OM⊥ON,其中O是坐标原点.
(1)求椭圆E的方程;
(2)过椭圆E的左顶点B作y轴平行线BQ,过点N作x轴平行线NQ,直线BQ与NQ相交于点Q.若△QMN是以MN为一条腰的等腰三角形,求直线MN的方程.
查看答案
某次国际象棋友谊赛在中国队和乌克兰队之间举行,比赛采用积分制,比赛规则规定赢一局得2分,平一局得1分,输一局得0分,根据以往战况,每局中国队赢的概率为manfen5.com 满分网,乌克兰队赢的概率为manfen5.com 满分网,且每局比赛输赢互不影响.若中国队第n局的得分记为an,令Sn=a1+a2+…+an
(1)求S3=4的概率;
(2)若规定:当其中一方的积分达到或超过4分时,比赛不再继续,否则,继续进行.设随机变量ξ表示此次比赛共进行的局数,求ξ的分布列及数学期望.
查看答案
manfen5.com 满分网已知函数f(x)=Asin(ωx+φ)manfen5.com 满分网的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x,2)和(x+2π,-2).
(1)求f(x)的解析式及x的值;
(2)若锐角θ满足manfen5.com 满分网,求f(4θ)的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.