满分5 > 高中数学试题 >

已知椭圆的左、右焦点分别为F1、F2,短轴两个端点为A、B,且四边形F1AF2B...

已知椭圆manfen5.com 满分网的左、右焦点分别为F1、F2,短轴两个端点为A、B,且四边形F1AF2B是边长为2的正方形.
(1)求椭圆的方程;
(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证明:manfen5.com 满分网为定值.
(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)由题意知a=2,b=c,b2=2,由此可知椭圆方程为. (2)设M(2,y),P(x1,y1),,直线CM:,代入椭圆方程x2+2y2=4,得,然后利用根与系数的关系能够推导出为定值. (3)设存在Q(m,0)满足条件,则MQ⊥DP.,再由,由此可知存在Q(0,0)满足条件. 【解析】 (1)a=2,b=c,a2=b2+c2,∴b2=2; ∴椭圆方程为(4分) (2)C(-2,0),D(2,0),设M(2,y),P(x1,y1), 直线CM:,代入椭圆方程x2+2y2=4, 得(6分) ∵,∴(8分) ∴(定值)(10分) (3)设存在Q(m,0)满足条件,则MQ⊥DP(11分) (12分) 则由,从而得m=0 ∴存在Q(0,0)满足条件(14分)
复制答案
考点分析:
相关试题推荐
在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q1为0.25,在B处的命中率为q2,该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为:
ξ2  345
 p0.03  0.240.010.480.24
(1)求q2的值;
(2)求随机变量ξ的数学期望Eξ;
(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.
查看答案
如图,在Rt△ABC中,AB=BC=4,点E、F分别在线段AB、AC上,且EF∥BC,将△AEF沿EF折起到△PEF的位置,使得二面角P-EF-B的大小为60°.
(1)求证:EF⊥PB;
(2)当点E为线段AB的中点时,求PC与平面BCFE所成角的大小.
manfen5.com 满分网
查看答案
已知函数f(x)=2lnx-x.
(1)写出函数f(x)的定义域,并求其单调区间;
(2)已知曲线y=f(x)在点(x,f(x))处的切线是y=kx-2,求k的值.
查看答案
定义一种运算manfen5.com 满分网,若函数manfen5.com 满分网manfen5.com 满分网
(1)求f(x)的最小正周期;
(2)求f(x)的单调递增区间;
(3)求使f(x)>2的x的集合.
查看答案
已知函数f(x)=manfen5.com 满分网,那么方程f(x)=0在区间[-100,100]上的根的个数是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.