函数
的反函数为f
-1(x),数列{a
n}和{b
n}满足:
,a
n+1=f
-1(a
n),函数y=f
-1(x)的图象在点(n,f
-1(n))(n∈N
*)处的切线在y轴上的截距为b
n.
(1)求数列{a
n}的通项公式;
(2)若数列
;的项中仅
最小,求λ的取值范围;
(3)令函数
,0<x<1.数列{x
n}满足:
,0<x
n<1且x
n+1=g(x
n),(其中n∈N
*).证明:
.
考点分析:
相关试题推荐
已知椭圆
的左、右焦点分别为F
1、F
2,短轴两个端点为A、B,且四边形F
1AF
2B是边长为2的正方形.
(1)求椭圆的方程;
(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证明:
为定值.
(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案
在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q
1为0.25,在B处的命中率为q
2,该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为:
ξ | | 2 | 3 | 4 | 5 |
p | 0.03 | 0.24 | 0.01 | 0.48 | 0.24 |
(1)求q
2的值;
(2)求随机变量ξ的数学期望Eξ;
(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.
查看答案
如图,在Rt△ABC中,AB=BC=4,点E、F分别在线段AB、AC上,且EF∥BC,将△AEF沿EF折起到△PEF的位置,使得二面角P-EF-B的大小为60°.
(1)求证:EF⊥PB;
(2)当点E为线段AB的中点时,求PC与平面BCFE所成角的大小.
查看答案
已知函数f(x)=2lnx-x.
(1)写出函数f(x)的定义域,并求其单调区间;
(2)已知曲线y=f(x)在点(x
,f(x
))处的切线是y=kx-2,求k的值.
查看答案
定义一种运算
,若函数
且
.
(1)求f(x)的最小正周期;
(2)求f(x)的单调递增区间;
(3)求使f(x)>2的x的集合.
查看答案