满分5 > 高中数学试题 >

已知函数f(x)=loga(x+1)-loga(1-x),a>0且a≠1. (1...

已知函数f(x)=loga(x+1)-loga(1-x),a>0且a≠1.
(1)求f(x)的定义域;
(2)判断f(x)的奇偶性并予以证明;
(3)当a>1时,求使f(x)>0的x的取值范围.
(1)根据对数的性质可知真数大于零,进而确定x的范围,求得函数的定义域. (2)利用函数解析式可求得f(-x)=-f(x),进而判断出函数为奇函数. (3)根据当a>1时,f(x)在定义域{x|-1<x<1}内是增函数,可推断出f(x)>0,进而可知进而求得x的范围. 【解析】 (1)f(x)=loga(x+1)-loga(1-x),则解得-1<x<1. 故所求定义域为{x|-1<x<1}. (2)由(1)知f(x)的定义域为{x|-1<x<1}, 且f(-x)=loga(-x+1)-loga(1+x)=-[loga(x+1)-loga(1-x)]=-f(x), 故f(x)为奇函数. (3)因为当a>1时,f(x)在定义域{x|-1<x<1}内是增函数, 所以. 解得0<x<1. 所以使f(x)>0的x的取值范围是{x|0<x<1}.
复制答案
考点分析:
相关试题推荐
设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lg x,则满足f(x)>0的x的取值范围是    查看答案
manfen5.com 满分网已知函数f(x)=manfen5.com 满分网,若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是    查看答案
在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b22有零点的概率为    查看答案
定义在R上的f(x)满足f(x)=manfen5.com 满分网则f(2010)=    查看答案
一水池有2个进水口,1个出水口,进出水速度如图甲.乙所示.某天0点到6点,该水池的蓄水量如图丙所示. (至少打开一个水口),给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则一定能确定正确的论断是( )
manfen5.com 满分网
A.①
B.①②
C.①③
D.①②③
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.