满分5 > 高中数学试题 >

设f(x)是定义在[-1,1]上的偶函数,f(x)与g(x)的图象关于x=1对称...

设f(x)是定义在[-1,1]上的偶函数,f(x)与g(x)的图象关于x=1对称,且当x∈[2,3]时,g(x)=6(x-2)-2(x-2)3
(1)求f(x)的解析式;
(2)求f(x)的单调区间及最小值.
(1)根据f(x)与g(x)的图象关于x=1对称可推知f(x)=g(2-x),进而根据g(x)的解析式,求出f(x)[-1,0]上的解析式,再根据函数是偶函数求得f(x)在[-1,0]的解析式. (2)分别看0<x≤1和-1≤x≤0时,导函数f’(x)大于还是小于零,进而判断函数的单调性.进而可得函数的单调区间和最小值. 【解析】 (1)当-1≤x≤0时,2-x∈[2,3],且y=f(x)上任意的点P(x,y) 关于直线x=1的对称点P'(2-x,y)都在y=g(x)图象上. ∴f(x)=g(2-x)=6(2-x-2)-2(2-x-2)3=2x3-6x 又f(x)是偶函数 ∴0<x≤1时,f(x)=6x-2x3, ∴ (2)当-1≤x≤0时,f‘(x)=6x2-6<0 ∴f(x)在[-1,0]单调减, 当0<x≤1时,f‘(x)=6-6x2>0 ∴f(x)在(0,1]单调增, ∴单调递减区间为[-1,0],单调递增区间为(0,1];最小值为f(0)=0.
复制答案
考点分析:
相关试题推荐
在△ABC中,设角A、B、C的对边分别为a、b、c,且manfen5.com 满分网
(1)求sinB的值;
(2)若b=4manfen5.com 满分网,且a=c,求△ABC的面积.
查看答案
Y已知p:|1-manfen5.com 满分网|≤2,q:x2-2x+1-m2≤0(m>0).若“非p”是“非q”的必要而不充分条件,求实数m的取值范围.
查看答案
函数y=f(x)满足f(-x)=-f(x),当x>0时,f(x)=x2+x,则当x<0时,f(x)=    查看答案
实数x,y满足x2+y2=1,则x+y+1的最大值为    查看答案
二次函数y=ax2+(2a-1)x-5在[-3,+∞)上递减,则a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.