满分5 > 高中数学试题 >

f(x)与g(x)是定义在R上的两个可导函数,若f(x),g(x)满足f′(x)...

f(x)与g(x)是定义在R上的两个可导函数,若f(x),g(x)满足f′(x)=g′(x),则f(x)与g(x)满足( )
A.f(x)=g(x)
B.f(x)=g(x)=0
C.f(x)-g(x)为常数函数
D.f(x)+g(x)为常数函数
先根据导数的运算法则将f′(x)=g′(x)转化为[f(x)-g(x)]′=0,然后由函数的求导法则可得答案. 【解析】 由f′(x)=g′(x),得f′(x)-g′(x)=0, 即[f(x)-g(x)]′=0,所以f(x)-g(x)=C(C为常数). 故选C.
复制答案
考点分析:
相关试题推荐
下列求导数运算正确的是( )
A.(x+manfen5.com 满分网)′=1+manfen5.com 满分网
B.(log2x)′=manfen5.com 满分网
C.(3x)′=3xlog3e
D.(x2cosx)′=-2xsin
查看答案
若函数f(x)的导函数为f′(x)=-sinx,则函数图象在点(4,f(4))处的切线的倾斜角为( )
A.90°
B.0°
C.锐角
D.钝角
查看答案
已知语句p:函数y=f(x)的导函数是常数函数;语句q:函数y=f(x)是一次函数,则语句p是语句q的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
查看答案
设函数f(x)=manfen5.com 满分网(a<0)的定义域为D,若所有点(s,f(x))(s,t∈D)构成一个正方形区域,则a的值为    查看答案
设函数f(x)的定义域为D,若存在非零实数t使得对于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),则称f(x)为M上的t高调函数.如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是     .如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是     查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.