(1)直接利用数学归纳法的证明方法,验证n=1时命题成立,然后假设n=k时命题成立,证明n=k+1时命题也成立即可.
(2)利用已知和(1)的结果,化简an+1=anbn+1推出-=1.然后说明数列{}是公差为1的等差数列,其首项为=,求出数列{an}的通项公式.
【解析】
(1)证明:用数学归纳法证明.
①当n=1时,a1+b1=a+(1-a)=1,命题成立;
②假设n=k(k≥1且k∈N*)时命题成立,即ak+bk=1,则当n=k+1时,ak+1+bk+1=akbk+1+bk+1=(ak+1)•bk+1=(ak+1)•===1.
∴当n=k+1时,命题也成立.
由①、②可知,an+bn=1对n∈N*恒成立.
(2)∵an+1=anbn+1===,
∴==+1,
即-=1.
数列{}是公差为1的等差数列,其首项为=,
=+(n-1)×1,从而an=.