满分5 > 高中数学试题 >

已知函数f(x)=lnx-ax(a∈R). (1)求f(x)的单调区间; (2)...

已知函数f(x)=lnx-ax(a∈R).
(1)求f(x)的单调区间;
(2)若a=1,且b≠0,函数manfen5.com 满分网,若对任意的x1∈(1,2),总存在x2∈(1,2),使f(x1)=g(x2),求实数b的取值范围.
(1)先确定函数f(x)的定义域,然后对函数f(x)求导,根据导函数大于0时原函数单调递增,导函数小于0时原函数单调递减求出单调区间. (2)分别表示出函数f(x)、g(x)的值域,根据f(x)的值域应为g(x)的值域的子集可得答案. 【解析】 (1)f(x)=lnx-ax, ∴x>0,即函数f(x)的定义域为(0,+∞) ∴当a≤0时,f(x)在(0,+∞)上是增函数 当a>0时,∵f'(x)== ∵ 即当a>0时上是增函数,在上是减函数. (2)设f(x)的值域为A,g(x)的值域为B, 则由已知,对于任意的x1∈(1,2),总存在x2∈(1,2), 使f(x1)=g(x2),得A⊆B 由(1)知a=1时,f(x)在(1,+∞)上是减函数, ∴f(x)在x∈(1,2)上单调递减, ∴f(x)的值域为A=(ln2-2,-1) ∵g'(x)=bx2-b=b(x-1)(x+1) ∴(i)当b<0时,g(x)在(1,2)上是减函数, 此时,g(x)的值域为 为满足 ∴即 (ii)当b>0时,g(x)在(1,2)上是单调递增函数, 此时,g(x)的值域为 为满足 ∴ ∴, 综上可知b的取值范围是
复制答案
考点分析:
相关试题推荐
已知动点M到点F(1,0)的距离,等于它到直线x=-1的距离.
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)过点F任意作互相垂直的两条直线l1,l2,分别交曲线C于点A,B和M,N.设线段AB,MN的中点分别为P,Q,求证:直线PQ恒过一个定点;
(Ⅲ)在(Ⅱ)的条件下,求△FPQ面积的最小值.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,四棱锥P-ABCD中,底面ABCD是直角梯形,∠DAB=90°,AD∥BC,AD⊥侧面PAB,△PAB是等边三角形,DA=AB=2,BC=manfen5.com 满分网AD,E是线段AB的中点.
(Ⅰ)求证:PE⊥CD;
(Ⅱ)求四棱锥P-ABCD的体积;
(Ⅲ)求PC与平面PDE所成角的正弦值.
查看答案
某班级举行一次知识竞赛活动,活动分为初赛和决赛两个阶段、现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
分数(分数段)频数(人数)频率
[60,70)0.16
[70,80)22
[80,90)140.28
[90,100)
合计501
(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);
(2)决赛规则如下:参加决赛的每位同学依次口答4道小题,答对2道题就终止答题,并获得一等奖.如果前三道题都答错,就不再答第四题.某同学进入决赛,每道题答对的概率P的值恰好与频率分布表中不少于80分的频率的值相同.
①求该同学恰好答满4道题而获得一等奖的概率;
②记该同学决赛中答题个数为X,求X的分布列及数学期望.
查看答案
manfen5.com 满分网如图,一人在C地看到建筑物A在正北方向,另一建筑物B在北偏西45°方向,此人向北偏西75°方向前进manfen5.com 满分网km到达D处,看到A在他的北偏东45°方向,B在北偏东75°方向,试求这两座建筑物之间的距离.
查看答案
随机地向区域manfen5.com 满分网内投点,点落在区域的每个位置是等可能的,则坐标原点与该点连线的倾斜角小于manfen5.com 满分网的概率为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.