满分5 > 高中数学试题 >

4-1(几何证明选讲) 如图,△ABC是直角三角形,∠ABC=90o.以AB为直...

4-1(几何证明选讲)
如图,△ABC是直角三角形,∠ABC=90o.以AB为直径的圆0交AC于点E点D是BC边的中点,连0D交圆0于点M
(I)求证:0,B,D,E四点共圆;
(II)求证:2DE2=DM•AC+DM•AB

manfen5.com 满分网
(1)做出辅助线,首先证明两个三角形全等,根据三角形三边对应相等,得到两个三角形全等,得到对应角相等,从而得到四边形一对对角互补,即四点共圆. (2)根据圆的切割线定理,写出DE,DM,DH三者之间的关系,把DH写成两部分的和,然后变化成AC,整理系数得到结论成立. 证明:(1)连接BE,则BE⊥EC 又D是BC的中点 ∴DE=BD 又∴OE=OB,OD=OD ∴△ODE≌△ODB ∴∠OBD=∠OED=90° ∴D,E,O,B四点共圆. (2)延长DO交圆于点H ∵DE2=DM•DH=DM•(DO+OH)=DM•DO+DM•OH ∴DE2=DM•(AC)+DM•(AB) ∴2DE2=DM•AC+DM•AB.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=lnx-ax(a∈R).
(1)求f(x)的单调区间;
(2)若a=1,且b≠0,函数manfen5.com 满分网,若对任意的x1∈(1,2),总存在x2∈(1,2),使f(x1)=g(x2),求实数b的取值范围.
查看答案
已知动点M到点F(1,0)的距离,等于它到直线x=-1的距离.
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)过点F任意作互相垂直的两条直线l1,l2,分别交曲线C于点A,B和M,N.设线段AB,MN的中点分别为P,Q,求证:直线PQ恒过一个定点;
(Ⅲ)在(Ⅱ)的条件下,求△FPQ面积的最小值.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,四棱锥P-ABCD中,底面ABCD是直角梯形,∠DAB=90°,AD∥BC,AD⊥侧面PAB,△PAB是等边三角形,DA=AB=2,BC=manfen5.com 满分网AD,E是线段AB的中点.
(Ⅰ)求证:PE⊥CD;
(Ⅱ)求四棱锥P-ABCD的体积;
(Ⅲ)求PC与平面PDE所成角的正弦值.
查看答案
某班级举行一次知识竞赛活动,活动分为初赛和决赛两个阶段、现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
分数(分数段)频数(人数)频率
[60,70)0.16
[70,80)22
[80,90)140.28
[90,100)
合计501
(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);
(2)决赛规则如下:参加决赛的每位同学依次口答4道小题,答对2道题就终止答题,并获得一等奖.如果前三道题都答错,就不再答第四题.某同学进入决赛,每道题答对的概率P的值恰好与频率分布表中不少于80分的频率的值相同.
①求该同学恰好答满4道题而获得一等奖的概率;
②记该同学决赛中答题个数为X,求X的分布列及数学期望.
查看答案
manfen5.com 满分网如图,一人在C地看到建筑物A在正北方向,另一建筑物B在北偏西45°方向,此人向北偏西75°方向前进manfen5.com 满分网km到达D处,看到A在他的北偏东45°方向,B在北偏东75°方向,试求这两座建筑物之间的距离.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.