满分5 > 高中数学试题 >

已知椭圆C的中心为直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的...

已知椭圆C的中心为直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1
(1)求椭圆C的方程;
(2)若P为椭圆C的动点,M为过P且垂直于x轴的直线上的点,manfen5.com 满分网,e为椭圆C的离心率,求点M的轨迹方程,并说明轨迹是什么曲线.
(1)根据题意,椭圆的一个顶点到两个焦点的距离分别是7和1,分析可得这个顶点是长轴的端点,则有a+c=7,a-c=1;解可得ac的值,进而可得b的值,即可得答案; (2)设M(x,y),P(x,y1 ),根据椭圆的方程为+=1且P在椭圆上,可得e的值与y12=①;根据题意,有=e2=②;联立①②化简可得答案. 【解析】 (1)根据题意,椭圆的一个顶点到两个焦点的距离分别是7和1, 则这个顶点不会是短轴的端点,而是长轴的端点, 则有a+c=7,a-c=1; 解可得a=4,c=3; 则b=; 故椭圆的方程为+=1; (2)设M(x,y),P(x,y1 ), 椭圆的方程为+=1中,e==; 又由椭圆方程为+=1,且P在椭圆上,即y12=①; 根据题意得=e2=②; ①②联立化简可得,y2=; 即y=±,(-4≤x≤4) 其轨迹是两条平行于x轴的线段.
复制答案
考点分析:
相关试题推荐
已知四棱锥P-ABCD的三视图如右图,该棱锥中,PA=AB=1,PD与平面ABCD所成角是30°,点F是PB的中点,点E在棱BC上移动.
(I)画出该棱锥的直观图并证明:无论点E在棱BC的何处,总有PE⊥AF;
(II)连接DE,设G为DE上一动点,当三棱锥P-AGE的体积为manfen5.com 满分网时,试确定G在DE上的位置.

manfen5.com 满分网 查看答案
一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.
(Ⅰ)若一次抽取3张卡片,求3张卡片上数字之和大于7的概率;
(Ⅱ)若第一次抽1张卡片,放回后再抽取1张卡片,求两次抽取中至少一次抽到数字3的概率.
查看答案
在△ABC中,已知角A、B、C所对的边分别是a、b、c,且a=2,∠A=manfen5.com 满分网,设∠C=θ.
(I)用θ表示b;
(II)若sinθ=manfen5.com 满分网的值.
查看答案
已知数列{an}的前n项和为Sn,a1=1,且Sn=2n+1-n-2,(n∈N*).
(I)求数列{an}的通项公式;
(II)若bn=(2n+1)an+2n+1,求数列{bn}的前n项和Tn
查看答案
选做题(请在下列3道题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.不等式|x+1|+|x-2|≤4的解集为   
B.直线manfen5.com 满分网过圆manfen5.com 满分网的圆心,
则圆心坐标为   
C.已知PA是⊙O的切线,切点为A,PA=2cm,AC是⊙O的直径,PC交⊙O于点B,AB=manfen5.com 满分网cm,则△ABC的面积为    cm2
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.