满分5 > 高中数学试题 >

若f(x)在定义域(-1,1)内可导,且f′(x)<0;又当a、b∈(-1,1)...

若f(x)在定义域(-1,1)内可导,且f′(x)<0;又当a、b∈(-1,1)且a+b=0时,f(a)+f(b)=0,解不等式f(1-m)+f(1-m2)>0.
由“f(x)在定义域(-1,1)内可导,且f′(x)<0”证明其单调性,再“又当a、b∈(-1,1)且a+b=0时,f(a)+f(b)=0”得其奇偶性,最后转化为函数的单调性定义形式来解决. 【解析】 ∵f(x)在(-1,1)内可导,且f′(x)<0, ∴f(x)在(-1,1)上为减函数 又当a,b∈(-1,1),a+b=0时,f(a)+f(b)=0, ∴f(b)=-f(a),即f(-a)=-f(a). ∴f(x)在(-1,1)上为奇函数, ∴f(1-m)+f(1-m2)>0⇔f(1-m)>-f(1-m2) ⇔f(1-m)>f(m2-1)⇔ ∴1<m< ∴解集为:(1,).
复制答案
考点分析:
相关试题推荐
已知函数f(x)对于x>0有意义,且满足条件f(2)=1,f(xy)=f(x)+f(y),f(x)是非减函数.
(1)证明f(1)=0;
(2)若f(x)+f(x-2)≥2成立,求x的取值范围.
查看答案
已知函数f(x)=ax2+(b-8)x-a-ab,当x∈(-3,2)时,其值为正,而当x∈(-∞,-3)∪(2,+∞)时,其值为负,求a,b的值及f(x)的表达式.
查看答案
设f(x)是定义在(-∞,+∞)上的函数,对一切x∈R均有f(x)+f(x+3)=0,且当-1<x≤1时,f(x)=2x-3,求当2<x≤4时,f(x)的解析式.
查看答案
若函数f(x)=ax+blog2(x+manfen5.com 满分网)+1在(-∞,0)上有最小值-3(a,b为非零常数),则函数f(x)在(0,+∞)上有最     值为     查看答案
x是x的方程ax=logax(0<a<1)的解,则x,1,a这三个数的大小关系是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.