满分5 > 高中数学试题 >

先后2次抛掷一枚骰子,将得到的点数分别记为a,b. (1)求直线ax+by+5=...

先后2次抛掷一枚骰子,将得到的点数分别记为a,b.
(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;
(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
本题考查的知识点是古典概型,我们要列出一枚骰子连掷两次先后出现的点数所有的情况个数 (1)再根求出满足条件直线ax+by+5=0与圆x2+y2=1的事件个数,然后代入古典概型公式即可求解; (2)再根求出满足条件a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的事件个数,然后代入古典概型公式即可求解. 【解析】 (1)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36. ∵直线ax+by+c=0与圆x2+y2=1相切的充要条件是 即:a2+b2=25,由于a,b∈{1,2,3,4,5,6} ∴满足条件的情况只有a=3,b=4,c=5;或a=4,b=3,c=5两种情况. ∴直线ax+by+c=0与圆x2+y2=1相切的概率是 (2)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36. ∵三角形的一边长为5 ∴当a=1时,b=5,(1,5,5)1种 当a=2时,b=5,(2,5,5)1种 当a=3时,b=3,5,(3,3,5),(3,5,5)2种 当a=4时,b=4,5,(4,4,5),(4,5,5)2种 当a=5时,b=1,2,3,4,5,6,(5,1,5),(5,2,5),(5,3,5), (5,4,5),(5,5,5),(5,6,5)6种 当a=6时,b=5,6,(6,5,5),(6,6,5)2种 故满足条件的不同情况共有14种 故三条线段能围成不同的等腰三角形的概率为.
复制答案
考点分析:
相关试题推荐
下列四种说法:
①命题“∃x∈R,使得x2+1>3x”的否定是“∀x∈R,都有x2+1≤3x”;
②“m=-2”是“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的必要不充分条件;
③将一枚骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有实根的概率为manfen5.com 满分网
④过点(manfen5.com 满分网,1)且与函数y=manfen5.com 满分网图象相切的直线方程是4x+y-3=0.
其中所有正确说法的序号是     查看答案
若a,b均为正实数,且manfen5.com 满分网恒成立,则m的最小值是    查看答案
某厂家根据以往的经验得到下面有关生产销售的统计:每生产产品x(百台),其总成本为G(x)万元,G(x)=2+x;销售收入R(x)(万元)满足:manfen5.com 满分网
要使工厂有赢利,产量x的取值范围是     查看答案
manfen5.com 满分网如图给出的是计算manfen5.com 满分网值的一个程序框图,其中判断框中应该填的条件是    查看答案
设直线2x+3y+1=0和圆x2+y2-2x-3=0相交于点A、B,则弦AB的垂直平分线方程是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.