满分5 > 高中数学试题 >

已知点(n,an)(n∈N*)在函数f(x)=-2x-2的图象上,数列{an}的...

已知点(n,an)(n∈N*)在函数f(x)=-2x-2的图象上,数列{an}的前n项和为Sn,数列{bn}的前n项和为Tn,且Tn是6Sn与8n的等差中项.
(1)求数列{bn}的通项公式;
(2)设cn=bn+8n+3,数列{dn}满足d1=c1manfen5.com 满分网(n∈N*).求数列{dn}的前n项和Dn
(3)设g(x)是定义在正整数集上的函数,对于任意的正整数x1,x2,恒有g(x1x2)=x1g(x2)+x2g(x1)成立,且g(2)=a(a为常数,a≠0),试判断数列manfen5.com 满分网是否为等差数列,并说明理由.
(1)本题考查求数列的通项公式,用数列的前n项和求是列的通项公式,注意对于第一项的验证,又根据等比中项解决问题,这一道题目比较困难,第一问考查的内容较多. (2)构造新数列,构造数列时按照一般的方式来整理,整理后发现结果比较简单,利用等比数列的前n项和公式求数列的和. (3)本题证明数列是一个等差数列,应用等差数列的定义来证明,只要数列的连续两项之差是一个常数,问题得证,证明是一个常数的过程是一个数列和函数综合的过程,用到所给的函数的性质. 【解析】 (Ⅰ)依题意得an=-2n-2,故a1=-4. 又2Tn=6Sn+8n,即Tn=3Sn+4n, ∴当n≥2时,bn=Tn-Tn-1=3(Sn-Sn-1)+4=3an+4=-6n-2. 又b1=T1=3S1+4=3a1+4=-8,也适合上式, ∴bn=-6n-2(n∈N*). (Ⅱ)∵cn=bn+8n+3=-6n-2+8n+3=2n+1(n∈N*), =2dn+1, 因此dn+1+1=2(dn+1)(n∈N*). 由于d1=c1=3, ∴{dn+1}是首项为d1+1=4,公比为2的等比数列. 故dn+1=4×2n-1=2n+1, ∴dn=2n+1-1. Dn=(22+23++2n+1)-n=. (Ⅲ) 则==+= ∴= 因为已知a为常数,则数列是等差数列.
复制答案
考点分析:
相关试题推荐
甲袋和乙袋中都装有大小相同的红球和白球,已知甲袋中共有m个球,乙袋中共有2m个球,从甲袋中摸出1个球为红球的概率为manfen5.com 满分网,从乙袋中摸出1个球为红球的概率为P2
(1)若m=10,求甲袋中红球的个数;
(2)若将甲、乙两袋中的球装在一起后,从中摸出1个红球的概率是manfen5.com 满分网,求P2的值;
(3)设P2=manfen5.com 满分网,若从甲、乙两袋中各自有放回地摸球,每次摸出1个球,并且从甲袋中摸1次,从乙袋中摸2次.设ξ表示摸出红球的总次数,求ξ的分布列和数学期望.
查看答案
三棱锥P-ABC中,PC、AC、BC两两垂直,BC=PC=1,AC=2,E、F、G分别是AB、AC、AP的中点.
(Ⅰ)证明平面GFE∥平面PCB;
(Ⅱ)求二面角B-AP-C的大小;
(Ⅲ)求直线PF与平面PAB所成角的大小.

manfen5.com 满分网 查看答案
已知manfen5.com 满分网manfen5.com 满分网).
(Ⅰ)求cosx的值;
(Ⅱ)求manfen5.com 满分网的值.
查看答案
把形如M=mn(m,n∈N*)的正整数表示成各项都是整数,公差为2的等差数列前n项的和,称作“对M的m项分划”,例如:9=32=1+3+5称作“对9的3项分划”;64=43=13+15+17+19称作“对64的4项分划”,据此对324的18项分划中最大的数是     查看答案
如图,已知F1、F2是椭圆manfen5.com 满分网(a>b>0)的左、右焦点,点P在椭圆C上,线段PF2与圆x2+y2=b2相切于点Q,且点Q为线段PF2的中点,则manfen5.com 满分网=    ;椭圆C的离心率为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.