满分5 > 高中数学试题 >

已知椭圆的左焦点为F,O为坐标原点. (I)求过点O、F,并且与椭圆的左准线l相...

已知椭圆manfen5.com 满分网的左焦点为F,O为坐标原点.
(I)求过点O、F,并且与椭圆的左准线l相切的圆的方程;
(II)设过点F且不与坐标轴垂直的直线交椭圆于A、B两点,
线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.

manfen5.com 满分网
(1)欲求圆的方程,关键是确定圆的圆心和半径,因为点O、F都在x轴上,所以圆心必在线段OF的垂直平分线上即在平行于y轴的直线上,结合圆与左准线l相切,可求得半径,进而求得圆心坐标; (2)欲求点G横坐标的取值范围,从函数思想的角度考虑,先将其表示成某一变量的函数,后求函数的值域,这里取直线AB的斜率K为自变量,通过解方程组求得点G横坐标(用k表示),再求其取值范围. 【解析】 (I)∵a2=2,b2=1, ∴c=1,F(-1,0),l:x=-2. ∵圆过点O、F, ∴圆心M在直线上. 设,则圆半径. 由|OM|=r,得, 解得. ∴所求圆的方程为. (II)设直线AB的方程为y=k(x+1)(k≠0), 代入,整理得(1+2k2)x2+4k2x+2k2-2=0. ∵直线AB过椭圆的左焦点F,∴方程有两个不等实根. 记A(x1,y1),B(x2,y2),AB中点N(x,y), 则,, ∴AB的垂直平分线NG的方程为. 令y=0,得. ∵k≠0,∴, ∴点G横坐标的取值范围为.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ex+2x2-3x.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当manfen5.com 满分网时,若关于x的不等式manfen5.com 满分网恒成立,试求实数a的取值范围.
查看答案
某市物价局调查了某种治疗H1N1流感的常规药品在2009年每个月的批发价格和该药品在药店的销售价格,调查发现,该药品的批发价格按月份以12元/盒为中心价随某一正弦曲线上下波动,且3月份的批发价格最高为14元/盒,7月份的批发价格最低为10元/盒.该药品在药店的销售价格按月份以14元/盒为中心价随另一正弦曲线上下波动,且5月份的销售价格最高为16元/盒,9月份的销售价格最低为12元/盒.
(Ⅰ)求该药品每盒的批发价格f(x)和销售价格g(x)关于月份x的函数解析式;
(Ⅱ)假设某药店每月初都购进这种药品p盒,且当月售完,求该药店在2009年哪些月份是盈利的?说明你的理由.
查看答案
如图,AB是圆O的直径,点C是弧AB的中点,D、E、F分别是VB,VC,AC的中点,VA⊥平面ABC.
(Ⅰ)求证:DE∥平面VOF;
(Ⅱ)求证:DE⊥平面VAC.

manfen5.com 满分网 查看答案
(理)已知向量manfen5.com 满分网=(1,1),向量manfen5.com 满分网和向量manfen5.com 满分网的夹角为manfen5.com 满分网,|manfen5.com 满分网|=manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网=-1.
(1)求向量manfen5.com 满分网
(2)若向量manfen5.com 满分网与向量manfen5.com 满分网=(1,0)的夹角为manfen5.com 满分网,向量manfen5.com 满分网=(cosA,manfen5.com 满分网),其中A、B、C为△ABC的内角a、b、c为三边,b2+ac=a2+c2,求|manfen5.com 满分网+manfen5.com 满分网|的取值范围.
查看答案
已知集合M={x|1≤x≤4,x∈N},对它的非空子集A,可将A中每个元素k,都乘以(-1)k再求和(如A={1,2,4},可求得和为(-1)1•1+(-1)2•2+(-1)4•4=5),则对M的所有非空子集,这些和的总和是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.