(Ⅰ)由题意知an=an-1+2n-1(n≥3)(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2=2n+1.
(Ⅱ)由于=.故Tn=b1f(1)+b2f(2)+…+bnf(n)
=,由此可证明Tn=b1f(1)+b2f(2)+…+bnf(n)<(n≥1).
【解析】
(Ⅰ)由题意知Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3)
即an=an-1+2n-1(n≥3)
∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2
=2n-1+2n-2+…+22+5
=2n+1(n≥3)
检验知n=1、2时,结论也成立,故an=2n+1.
(Ⅱ)由于
=
=.
故Tn=b1f(1)+b2f(2)+…+bnf(n)
=
=.