满分5 > 高中数学试题 >

已知数列{an}和等比数列{bn}满足:a1=b1=4,a2=b2=2,a3=1...

已知数列{an}和等比数列{bn}满足:a1=b1=4,a2=b2=2,a3=1,且数列{an+1-an}是等差数列,n∈N*
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)问是否存在k∈N*,使得manfen5.com 满分网?若存在,求出k的值;若不存在,请说明理由.
(Ⅰ)由题设可知,,由此能够推出. (Ⅱ)设,由题设条件知,由此入手能够推导出存在k=5,使得. 【解析】 (Ⅰ)由题设可知,, ∵a2-a1=-2,a3-a2=-1, ∴an+1-an=-2+(n-1)×1=n-3, ∴an=a1+(a2-a1)+(a3-a2)++(an-an-1)=, ∴. (Ⅱ)设, 显然,n=1,2,3时,cn=0, 又, ∴当n=3时,,∴, 当n=4时,,∴, 当n=5时,,∴, 当n≥6时,恒成立, ∴cn+1=an+1-bn+1>3+cn>3恒成立, ∴存在k=5,使得.
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网的右焦点为F,上顶点为A,P为C1上任一点,MN是圆C2:x2+(y-3)2=1的一条直径,若与AF平行且在y轴上的截距为manfen5.com 满分网的直线l恰好与圆C2相切.
(Ⅰ)已知椭圆C1的离心率;
(Ⅱ)若manfen5.com 满分网的最大值为49,求椭圆C1的方程.
查看答案
已知α∈R,f(x)=(x2-2)(x-a).
(Ⅰ)求f(x)的导函数f′(x);
(Ⅱ)若f′(1)=0.求f(x)在[-1,2]上的最大值和最小值;
(Ⅲ)若|a|<manfen5.com 满分网,求证:当x∈(-∞,-2)和x∈(-2,∞)时,f(x)都是单调增函数.
查看答案
如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为边长为1的等边三角形,∠BAC=90°,O为BC中点.
(Ⅰ)证明:SO⊥平面ABC;
(Ⅱ)证明:SA⊥BC;
(Ⅲ)求三棱锥S-ABC的体积.

manfen5.com 满分网 查看答案
甲乙二人用4张扑克牌(分别是红桃2,红桃3,方片3,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(Ⅰ)写出甲乙二人抽到的牌的所有结果;(例如甲抽到红桃2,乙抽到方块3,可记作(红2,方3))
(Ⅱ)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?
(Ⅲ)甲乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜;若乙抽到的牌的牌面数字比甲大,则乙胜,若甲、乙抽到的牌的牌面数字相同,则重新进行游戏;你认为此游戏是否公平,说明你的理由.
查看答案
已知在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若manfen5.com 满分网且sinC=cosA
(Ⅰ)求角A、B、C的大小;
(Ⅱ)设函数manfen5.com 满分网,求函数f(x)的单调递增区间,并指出它相邻两对称轴间的距离.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.