满分5 > 高中数学试题 >

已知A、B两点在抛物线C:x2=4y上,点M(0,4)满足=λ. (1)求证:⊥...

已知A、B两点在抛物线C:x2=4y上,点M(0,4)满足manfen5.com 满分网manfen5.com 满分网
(1)求证:manfen5.com 满分网manfen5.com 满分网
(2)设抛物线C过A、B两点的切线交于点N.
①求证:点N在一条定直线上;
②设4≤λ≤9,求直线MN在x轴上截距的取值范围.
先设A,B的坐标和直线AB的方程,再联立直线与抛物线方程消去y得到关于x的一元二次方程得到两根之和与两根之积. (1)根据向量的数量积运算表示出•,然后将所求的两根之和与两根之积代入即可得到:•=0,进而的得证. (2)①先表示出过点A的切线和过点B的切线,然后两直线联立可求出点N的坐标,即可得到点N在定直线y=-4上. ②根据=λ可知(x1,y1-4)=λ(-x2,4-y2),进而可联立方程可求得k2的表达式,进而求得k2的范围,最后根据直线MN在x轴的截距为k,进而可得答案. 【解析】 设A(x1,y1),B(x2,y2),lAB:y=kx+4与x2=4y联立得x2-4kx-16=0, △=(-4k)2-4(-16)=16k2+64>0, x1+x2=4k,x1x2=-16, (1)证明:• =x1x2+y1y2=x1x2+(kx1+4)(kx2+4) =(1+k2)x1x2+4k(x1+x2)+16 =(1+k2)(-16)+4k(4k)+16=0, ∴⊥. (2)①证明:过点A的切线: y=x1(x-x1)+y1=x1x-x12,① 过点B的切线:y=x2x-x22,② 联立①②结合(1)的结论得点N(,-4), 所以点N在定直线y=-4上. ②∵=λ,∴(x1,y1-4)=λ(-x2,4-y2), 联立可得 k2===λ+-2,4≤λ≤9, ∴≤k2≤. 直线MN:y=x+4在x轴的截距为k, ∴直线MN在x轴上截距的取值范围是 [-,-]∪[,].
复制答案
考点分析:
相关试题推荐
在平面直角坐标系xoy中,直线l与抛物线y2=4x相交于不同的A、B两点.
(Ⅰ)如果直线l过抛物线的焦点,求manfen5.com 满分网的值;
(Ⅱ)如果manfen5.com 满分网=-4,证明直线l必过一定点,并求出该定点.
查看答案
根据下列条件求抛物线的标准方程.
(1)抛物线的焦点是双曲线16x2-9y2=144的左顶点;
(2)过点P(2,-4);
(3)抛物线的焦点在x轴上,直线y=-3与抛物线交于点A,|AF|=5.
查看答案
连接抛物线x2=4y的焦点F与点M(1,0)所得的线段与抛物线交于点A,设点O为坐标原点,则△OAM的面积为    查看答案
对于抛物线y2=2x上任意一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是     查看答案
过点M(1,0)作直线与抛物线y2=4x交于A、B两点,则manfen5.com 满分网manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.