讨论满足f′(x)=0的点附近的导数的符号的变化情况,来确定极值根据极值与最值的求解方法,将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值,最小的一个就是最小值.
【解析】
f′(x)=5x4+20x3+15x2=5x2(x+3)(x+1),
当f′(x)=0得x=0,或x=-1,或x=-3,
∵0∈[-1,4],-1∈[-1,4],-3∉[-1,4]
列表:
又f(0)=0,f(-1)=0;右端点处f(4)=2625;
∴函数y=x5+5x4+5x3+1在区间[-1,4]上的最大值为2625,最小值为0.