满分5 > 高中数学试题 >

下面三个判断中,正确的是 ①f(n)=1+k+k2+…+kn(n∈N*),当n=...

下面三个判断中,正确的是    
①f(n)=1+k+k2+…+kn(n∈N*),当n=1时,f(n)=1;
②f(n)=1+manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网(n∈N*),当n=1时,f(n)=1+manfen5.com 满分网+manfen5.com 满分网
③f(n)=manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网(n∈N*),则f(k+1)=f(k)+manfen5.com 满分网+manfen5.com 满分网+manfen5.com 满分网
本题考查的知识点为简单的合情推理,根据式中定义对各个式子进行分类讨论,即可得到答案. 【解析】 ①中n=1时,f(n)=f(1)=1+k不等于1, 故①不正确; ②中n=1时,f(1)=1++,故②正确; ③中f(k+1)=f(k)+++-, 故③不正确 故答案为:②
复制答案
考点分析:
相关试题推荐
如图,第n个图形是由正n+2边形“扩展”而来(n=1,2,3,…),则第n-2(n≥3,n∈N*)个图形中共有     个顶点.
manfen5.com 满分网 查看答案
若f(n)=12+22+32+…+(2n)2,则f(k+1)与f(k)的递推关系式是     查看答案
已知1+2×3+3×32+4×32+…+n×3n-1=3n(na-b)+c对一切n∈N*都成立,则a、b、c的值为( )
A.a=manfen5.com 满分网,b=c=manfen5.com 满分网
B.a=b=c=manfen5.com 满分网
C.a=0,b=c=manfen5.com 满分网
D.不存在这样的a,b,c
查看答案
用数学归纳法证明等式1+3+5+…+(2n-1)=n2(n∈N*)的过程中,第二步假设n=k时等式成立,则当n=k+1时应得到( )
A.1+3+5+…+(2k+1)=k2
B.1+3+5+…+(2k+1)=(k+1)2
C.1+3+5+…+(2k+1)=(k+2)2
D.1+3+5+…+(2k+1)=(k+3)2
查看答案
某个命题与自然数n有关,若n=k(k∈N*)时命题成立,那么可推得当n=k+1时该命题也成立.现已知当n=5时,该命题不成立,那么可推得( )
A.当n=6时,该命题不成立
B.当n=6时,该命题成立
C.当n=4时,该命题不成立
D.当n=4时,该命题成立
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.