满分5 > 高中数学试题 >

从某学校高三年级共800名男生中随机抽取50名测量身高,测量发现被测学生身高全部...

manfen5.com 满分网从某学校高三年级共800名男生中随机抽取50名测量身高,测量发现被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160)、第二组[160,165);…第八组[190,195],右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.
(1)估计这所学校高三年级全体男生身高180cm以上(含180cm)的人数;
(2)求第六组、第七组的频率并补充完整频率分布直方图;
(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x、y,求满足|x-y|≤5的事件概率.
(1)由频率分布直方图分析可得后三组的频率,再根据公式:频率=,计算可得答案. (2)由等差数列可算出第六组、第七组人数,再算出小矩形的高度即可补图; (3)本小题是属于古典概型的问题,算出事件|x-y|≤5所包含的基本事件个数m,和基本事件的总数n,那么事件的概率P(A)=. 【解析】 (1)由频率分布直方图知,前五组频率为(0.008+0.016+0.04+0.04+0.06)×5=0.82, 后三组频率为1-0.82=0.18,人数为0.18×50=9人(2分) 这所学校高三男生身高在180cm以上(含180cm)的人数为800×0.18=144人(4分) (2)由频率分布直方图得第八组频率为0.008×5=0.04,人数为0.04×50=2人, 设第六组人数为m,则第七组人数为9-2-m=7-m,又m+2=2(7-m),所以m=4, 即第六组人数为4人,第七组人数为3人,频率分别为0.08,0.06,(6分) 频率除以组距分别等于0.016,0.012,见图(8分) (3)由(2)知身高在[180,185]内的人数为4人,设为a,b,c,d.身高在[190,195]的人数为2人,设为A,B. 若x,y∈[180,185]时,有ab,ac,ad,bc,bd,cd共六种情况. 若x,y∈[190,195]时,有AB共一种情况. 若x,y分别在[180,185],[190,195]内时,有aA,bA,cA,dA,aB,bB,cB,dB共8种情况 所以基本事件的总数为6+8+1=15种(12分) 事件|x-y|≤5所包含的基本事件个数有6+1=7种,故(14分)
复制答案
考点分析:
相关试题推荐
如图甲,在直角梯形PBCD中,PB∥CD,CD⊥BC,BC=PB=2CD,A是PB的中点.现沿AD把平面PAD折起,使得PA⊥AB(如图乙所示),E、F分别为BC、AB边的中点.
manfen5.com 满分网
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求证:平面PAE⊥平面PDE;
(Ⅲ)在PA上找一点G,使得FG∥平面PDE.
查看答案
已知函数f(x)=sinx+cosx,f′(x)是f(x)的导函数.
(1)求函数F(x)=f(x)f′(x)+[f(x)]2的最大值和最小正周期;
(2)若f(x)=2f'(x),求manfen5.com 满分网的值.
查看答案
如图,P是双曲线manfen5.com 满分网上的动点,F1、F2是双曲线的焦点,M是∠F1PF2的平分线上一点,且manfen5.com 满分网.某同学用以下方法研究|OM|:延长F2M交PF1于点N,可知△PNF2为等腰三角形,且M为F2M的中点,得manfen5.com 满分网.类似地:P是椭圆manfen5.com 满分网上的动点,F1、F2是椭圆的焦点,M是∠F1PF2的平分线上一点,且manfen5.com 满分网.则|OM|的取值范围是    
manfen5.com 满分网 查看答案
已知函数f(x)=x[x],其中[x]表示不超过x的最大整数,如:[-2.1]=-3,[-3]=-3,[2.2]=2,若x∈[0,n](n∈N*)则f(x)的值域为     查看答案
直线l:(2m+1)x+(m+1)y=7m+4被以点A(1,2)为圆心,3为半径的圆A所截得的最短弦长为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.