已知椭圆
的左、右焦点分别为F
1、F
2,短轴两个端点为A、B,且四边形F
1AF
2B是边长为2的正方形.
(1)求椭圆的方程;
(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证明:
为定值.
(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
从某学校高三年级共800名男生中随机抽取50名测量身高,测量发现被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160)、第二组[160,165);…第八组[190,195],右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.
(1)估计这所学校高三年级全体男生身高180cm以上(含180cm)的人数;
(2)求第六组、第七组的频率并补充完整频率分布直方图;
(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x、y,求满足|x-y|≤5的事件概率.
查看答案
如图甲,在直角梯形PBCD中,PB∥CD,CD⊥BC,BC=PB=2CD,A是PB的中点.现沿AD把平面PAD折起,使得PA⊥AB(如图乙所示),E、F分别为BC、AB边的中点.
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求证:平面PAE⊥平面PDE;
(Ⅲ)在PA上找一点G,使得FG∥平面PDE.
查看答案
已知函数f(x)=sinx+cosx,f′(x)是f(x)的导函数.
(1)求函数F(x)=f(x)f′(x)+[f(x)]
2的最大值和最小正周期;
(2)若f(x)=2f'(x),求
的值.
查看答案
如图,P是双曲线
上的动点,F
1、F
2是双曲线的焦点,M是∠F
1PF
2的平分线上一点,且
.某同学用以下方法研究|OM|:延长F
2M交PF
1于点N,可知△PNF
2为等腰三角形,且M为F
2M的中点,得
.类似地:P是椭圆
上的动点,F
1、F
2是椭圆的焦点,M是∠F
1PF
2的平分线上一点,且
.则|OM|的取值范围是
.
查看答案
已知函数f(x)=x[x],其中[x]表示不超过x的最大整数,如:[-2.1]=-3,[-3]=-3,[2.2]=2,若x∈[0,n](n∈N*)则f(x)的值域为
.
查看答案