设函数f(x)=x-In(x+m),其中常数m为整数.
(1)当m为何值时,f(x)≥0;
(2)定理:若函数g(x)在[a,b]上连续,且g(a)与g(b)异号,则至少存在一点x
∈(a,b),使g(x
)=0.
试用上述定理证明:当整数m>1时,方程f(x)=0,在[e
-m-m,e
2m-m]内有两个实根.
考点分析:
相关试题推荐
通过研究学生的学习行为,专家发现,学生的注意力着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设f(t)表示学生注意力随时间t(分钟)的变化规律(f(t)越大,表明学生注意力越集中),经过实验分析得知:f(t)=
.
(1)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?
(2)讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中?
(3)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,教师能否在学生达到所需的状态下讲授完这道题目?
查看答案
将边长为1m正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记
,则S的最小值是
.
查看答案
已知函数
若f(x)=2,则x=
.
查看答案
函数f(x)=
的零点所在的大致区间是
.
查看答案
函数f(x)=1-|2x-1|则方程f(x)-2
x=1的实根的个数是
.
查看答案