满分5 > 高中数学试题 >

设平面向量=(m,1),=(2,n),其中m,n∈{1,2,3,4}. (I)请...

设平面向量manfen5.com 满分网=(m,1),manfen5.com 满分网=(2,n),其中m,n∈{1,2,3,4}.
(I)请列出有序数组(m,n)的所有可能结果;
(II)记“使得mmanfen5.com 满分网⊥(mmanfen5.com 满分网-nmanfen5.com 满分网)成立的(m,n)”为事件A,求事件A发生的概率.
(I)按照第一个数字从小变大的顺序,列举出所有的事件,共有16种结果.(II)根据向量垂直的充要条件,列出关于m,n的关系式.把关系式整理成最简单的形式,根据所给的集合中的元素,列举出所有满足条件的事件,根据古典概型概率公式得到结果. 【解析】 (I)有序数对(m,n)的所有可能结果是: (1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4) (3,1)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4,4)共有16个, (II)∵m⊥(m-n), ∴m2-2m+1-n=0, ∴n=(m-1)2 ∵m,n都是集合{1,2,3,4}的元素. ∴事件A包含的基本事件为(2,1)和(3,4),共有2个, 又基本事件数是16, ∴所求的概率是P==
复制答案
考点分析:
相关试题推荐
数列{an}中,a1=manfen5.com 满分网,前n项和Sn满足Sn+1-Sn=(manfen5.com 满分网n+1(n∈)N*
(Ⅰ)求数列{a n}的通项公式a n以及前n项和Sn
(Ⅱ)若S1,t(S1+S2),3(S2+S3)成等差数列,求实数t的值.
查看答案
观察下列等式:
①cos2α=2cos2α-1;
②cos4α=8cos4α-8cos2α+1;
③cos6α=32cos6α-48cos4α+18cos2α-1;
④cos8α=128cos8α-256cos6α+160cos4α-32cos2α+1;
⑤cos10α=mcos10α-1280cos8α+1120cos6α+ncos4α+pcos2α-1;
可以推测,m-n+p=    查看答案
manfen5.com 满分网对于平面上的点集Ω,如果连接Ω中任意两点的线段必定包含于Ω,则称Ω为平面上的凸集,给出平面上4个点集的图形如下(阴影区域及其边界):其中为凸集的是    (写出所有凸集相应图形的序号). 查看答案
将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n等于    查看答案
若双曲线manfen5.com 满分网-manfen5.com 满分网=1(b>0)的渐近线方程式为y=manfen5.com 满分网,则b等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.