满分5 > 高中数学试题 >

某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港...

某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.
(Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(Ⅱ)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;
(Ⅲ)是否存在v,使得小艇以v海里/小时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定v的取值范围;若不存在,请说明理由.
(1)先假设相遇时小艇的航行距离为S,根据余弦定理可得到关系式S=整理后运用二次函数的性质可确定答案. (2)先假设小艇与轮船在某处相遇,根据余弦定理可得到(vt)2=202+(30t)2-2•20•30t•cos(90°-30°),再由t的范围可求得v的最小值. (3)根据(2)中v与t的关系式,设然后代入关系式整理成400u2-600u+900-v2=0,将问题等价于方程有两个不等正根的问题,进而得解. 【解析】 (1)设相遇时小艇的航行距离为S海里,则 S= == 故当t=时,,v= 即小艇以30海里/小时的速度航行,相遇时小艇的航行距离最小. (2)设小艇与轮船在某处相遇 由题意可得:(vt)2=202+(30t)2-2•20•30t•cos(90°-30°) 化简得:=400 由于0<t,即 所以当时,v取得最小值10 即小艇航行速度的最小值为10海里/小时 (3)由(2)知:,设(u>0) 于是400u2-600u+900-v2=0① 小艇总能有两种不同的航行方向与轮船相遇,等价于方程①应有两个不等正根,即 ,解得15<v<30 所以,v 的取值范围是(15,30)
复制答案
考点分析:
相关试题推荐
已知集合U={1,2,3,4,5,6},A={2,3,4},B={4,5,6},则A∩(CUB)=______
查看答案
已知抛物线C:y2=2px(p>0)过点A(1,-2).
(I)求抛物线C的方程,并求其准线方程;
(II)是否存在平行于OA(O为坐标原点)的直线L,使得直线L与抛物线C有公共点,且直线OA与L的距离等于manfen5.com 满分网?若存在,求直线L的方程;若不存在,说明理由.
查看答案
设平面向量manfen5.com 满分网=(m,1),manfen5.com 满分网=(2,n),其中m,n∈{1,2,3,4}.
(I)请列出有序数组(m,n)的所有可能结果;
(II)记“使得mmanfen5.com 满分网⊥(mmanfen5.com 满分网-nmanfen5.com 满分网)成立的(m,n)”为事件A,求事件A发生的概率.
查看答案
数列{an}中,a1=manfen5.com 满分网,前n项和Sn满足Sn+1-Sn=(manfen5.com 满分网n+1(n∈)N*
(Ⅰ)求数列{a n}的通项公式a n以及前n项和Sn
(Ⅱ)若S1,t(S1+S2),3(S2+S3)成等差数列,求实数t的值.
查看答案
观察下列等式:
①cos2α=2cos2α-1;
②cos4α=8cos4α-8cos2α+1;
③cos6α=32cos6α-48cos4α+18cos2α-1;
④cos8α=128cos8α-256cos6α+160cos4α-32cos2α+1;
⑤cos10α=mcos10α-1280cos8α+1120cos6α+ncos4α+pcos2α-1;
可以推测,m-n+p=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.