满分5 > 高中数学试题 >

已知椭圆(a>b>0)的离心率e=,连接椭圆的四个顶点得到的菱形的面积为4. (...

已知椭圆manfen5.com 满分网(a>b>0)的离心率e=manfen5.com 满分网,连接椭圆的四个顶点得到的菱形的面积为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-a,0).
(i)若manfen5.com 满分网,求直线l的倾斜角;
(ii)若点Q(0,y)在线段AB的垂直平分线上,且manfen5.com 满分网.求y的值.
(1)由离心率求得a和c的关系,进而根据c2=a2-b2求得a和b的关系,进而根据求得a和b,则椭圆的方程可得. (2)(i)由(1)可求得A点的坐标,设出点B的坐标和直线l的斜率,表示出直线l的方程与椭圆方程联立,消去y,由韦达定理求得点B的横坐标的表达式,进而利用直线方程求得其纵坐标表达式,表示出|AB|进而求得k,则直线的斜率可得. (ii)设线段AB的中点为M,由(i)可表示M的坐标,看当k=0时点B的坐标是(2,0),线段AB的垂直平分线为y轴,进而根据求得y;当k≠0时,可表示出线段AB的垂直平分线方程,令x=0得到y的表达式根据求得y;综合答案可得. 【解析】 (Ⅰ)由e=,得3a2=4c2. 再由c2=a2-b2,解得a=2b. 由题意可知,即ab=2. 解方程组得a=2,b=1. 所以椭圆的方程为. (Ⅱ)(i)【解析】 由(Ⅰ)可知点A的坐标是(-2,0). 设点B的坐标为(x1,y1),直线l的斜率为k. 则直线l的方程为y=k(x+2). 于是A、B两点的坐标满足方程组 消去y并整理,得(1+4k2)x2+16k2x+(16k2-4)=0. 由,得.从而. 所以. 由,得. 整理得32k4-9k2-23=0,即(k2-1)(32k2+23)=0,解得k=±1. 所以直线l的倾斜角为或. (ii)设线段AB的中点为M, 由(i)得到M的坐标为. 以下分两种情况: (1)当k=0时,点B的坐标是(2,0), 线段AB的垂直平分线为y轴, 于是. 由,得. (2)当k≠0时,线段AB的垂直平分线方程为 . 令x=0,解得. 由,, = =, 整理得7k2=2.故. 所以. 综上,或.
复制答案
考点分析:
相关试题推荐
已知定点A(-1,0),F(2,0),定直线l:x=manfen5.com 满分网,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N.
(Ⅰ)求E的方程;
(Ⅱ)试判断以线段MN为直径的圆是否过点F,并说明理由.
查看答案
在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于-manfen5.com 满分网
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.
查看答案
已知椭圆C的左、右焦点坐标分别是manfen5.com 满分网manfen5.com 满分网,离心率是manfen5.com 满分网,直线y=t椭圆C交与不同的两点M,N,以线段为直径作圆P,圆心为P.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若圆P与x轴相切,求圆心P的坐标;
(Ⅲ)设Q(x,y)是圆P上的动点,当T变化时,求y的最大值.
查看答案
椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=manfen5.com 满分网
(Ⅰ)求椭圆E的方程;
(Ⅱ)求∠F1AF2的角平分线所在直线的方程.

manfen5.com 满分网 查看答案
设椭圆C2manfen5.com 满分网=1(a>b>0),抛物线C2:x2+by=b2
(1)若C2经过C1的两个焦点,求C1的离心率;
(2)设A(0,b),manfen5.com 满分网,又M、N为C1与C2不在y轴上的两个交点,若△AMN的垂心为manfen5.com 满分网,且△QMN的重心在C2上,求椭圆C和抛物线C2的方程.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.