已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.
(1)求椭圆C的方程;
(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由.
考点分析:
相关试题推荐
在平面直角坐标系xoy中,如图,已知椭圆
的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x
1,y
1)、N(x
2,y
2),其中m>0,y
1>0,y
2<0.
(1)设动点P满足PF
2-PB
2=4,求点P的轨迹;
(2)设
,求点T的坐标;
(3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关).
查看答案
已知双曲线
的左、右顶点分别为A
1,A
2,点P(x
1,y
1),Q(x
1,-y
1)是双曲线上不同的两个动点.
(1)求直线A
1P与A
2Q交点的轨迹E的方程;
(2)若过点H(0,h)(h>1)的两条直线l
1和l
2与轨迹E都只有一个交点,且l
1⊥l
2,求h的值.
查看答案
已知椭圆
(a>b>0)的离心率e=
,连接椭圆的四个顶点得到的菱形的面积为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-a,0).
(i)若
,求直线l的倾斜角;
(ii)若点Q(0,y
)在线段AB的垂直平分线上,且
.求y
的值.
查看答案
已知定点A(-1,0),F(2,0),定直线l:x=
,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N.
(Ⅰ)求E的方程;
(Ⅱ)试判断以线段MN为直径的圆是否过点F,并说明理由.
查看答案
在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于-
.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.
查看答案