满分5 > 高中数学试题 >

已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=...

已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2,点(1,manfen5.com 满分网)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为manfen5.com 满分网,求以F2为圆心且与直线l相切的圆的方程.
(Ⅰ)先设出椭圆的方程,根据题设中的焦距求得c和焦点坐标,根据点(1,)到两焦点的距离求得a,进而根据b=求得b,得到椭圆的方程. (Ⅱ)先看当直线l⊥x轴,求得A,B点的坐标进而求得△AF2B的面积与题意不符故排除,进而可设直线l的方程为:y=k(x+1)与椭圆方程联立消y,设A(x1,y1),B(x2,y2),根据韦达定理可求得x1+x2和x1•x2,进而根据表示出|AB|的距离和圆的半径,求得k,最后求得圆的半径,得到圆的方程. 【解析】 (Ⅰ)设椭圆的方程为,由题意可得: 椭圆C两焦点坐标分别为F1(-1,0),F2(1,0). ∴. ∴a=2,又c=1,b2=4-1=3, 故椭圆的方程为. (Ⅱ)当直线l⊥x轴,计算得到: ,,不符合题意. 当直线l与x轴不垂直时,设直线l的方程为:y=k(x+1), 由,消去y得(3+4k2)x2+8k2x+4k2-12=0 显然△>0成立,设A(x1,y1),B(x2,y2), 则, 又 即, 又圆F2的半径, 所以, 化简,得17k4+k2-18=0, 即(k2-1)(17k2+18)=0,解得k=±1 所以,, 故圆F2的方程为:(x-1)2+y2=2.
复制答案
考点分析:
相关试题推荐
已知抛物线C的顶点在坐标原点,焦点在x轴上,P(2,0)为定点.
(Ⅰ)若点P为抛物线的焦点,求抛物线C的方程;
(Ⅱ)若动圆M过点P,且圆心M在抛物线C上运动,点A、B是圆M与y轴的两交点,试推断是否存在一条抛物线C,使|AB|为定值?若存在,求这个定值;若不存在,说明理由.
查看答案
已知抛物线方程x2=4y,过点(t,-4)作抛物线的两条切线PA、PB,切点分别为A、B.
(I)求证直线AB过定点(0,4);
(II)求△OAB(O为坐标原点)面积的最小值.
查看答案
已知椭圆manfen5.com 满分网+manfen5.com 满分网=1(a>b>0),直线l与椭圆交于A、B两点,M是线段AB的中点,连接OM并延长交椭圆于点C.直线AB与直线OM的斜率分别为k、m,且km=-manfen5.com 满分网
(Ⅰ)求b的值;
(Ⅱ)若直线AB经过椭圆的右焦点F,问:对于任意给定的不等于零的实数k,是否存在a∈[2,+∞],使得四边形OACB是平行四边形,请证明你的结论.

manfen5.com 满分网 查看答案
已知椭圆C的对称中心为原点O,焦点在x轴上,离心率为manfen5.com 满分网,且点(1,manfen5.com 满分网)在该椭圆上.
(I)求椭圆C的方程;
(II)过椭圆C的左焦点F1的直线l与椭圆C相交于A,B两点,若△AOB的面积为manfen5.com 满分网,求圆心在原点O且与直线l相切的圆的方程.
查看答案
已知动圆P过点N(2,0)并且与圆M:(x+2)2+y2=4相外切,动圆圆心P的轨迹为W,过点N的直线l与轨迹W交于A、B两点.
(1)求轨迹W的方程;
(2)若2manfen5.com 满分网=manfen5.com 满分网,求直线l的方程;
(3)对于l的任意一确定的位置,在直线x=manfen5.com 满分网上是否存在一点Q,使得manfen5.com 满分网manfen5.com 满分网=0,并说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.