满分5 > 高中数学试题 >

已知圆M:(x-m)2+(y-n)2=γ2及定点N(1,0),点P是圆M上的动点...

已知圆M:(x-m)2+(y-n)22及定点N(1,0),点P是圆M上的动点,点Q在NP上,点G在MP上,且满足manfen5.com 满分网=2manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网=0.
(Ⅰ)若m=-1,n=0,r=4,求点G的轨迹C的方程;
(Ⅱ)若动圆M和(Ⅰ)中所求轨迹C相交于不同两点A、B,是否存在一组正实数m,n,r使得直线MN垂直平分线段AB,若存在,求出这组正实数;若不存在,说明理由.
(Ⅰ)先利用向量间的关系求出点Q为PN的中点以及|PG|=|GN|,可得点G的轨迹是以M,N为焦点的椭圆进而求出点G的轨迹C的方程; (Ⅱ)先假设存在,利用点差法(把点的坐标代入椭圆后两方程作差)求出直线的斜率和中点坐标之间的关系,再利用直线MN垂直平分线段AB求出中点横坐标,与条件相比较可得结论. 【解析】 (Ⅰ)∵, ∴点Q为PN的中点, 又∵, ∴GQ⊥PN或G点与Q点重合. ∴|PG|=|GN|.(2分) 又|GM|+|GN|=|GM|+|GP|=|PM|=4. ∴点G的轨迹是以M,N为焦点的椭圆,且a=2,c=1. ∴,∴G的轨迹方程是.(5分) (Ⅱ)【解析】 不存在这样一组正实数,下面证明:(6分) 由题意,若存在这样的一组正实数,当直线MN的斜率存在时,设之为k, 故直线MN的方程为:y=k(x-1), 设A(x1,y1),B(x2,y2),AB中点D(x,y), 则, 两式相减得:,①(8分) 注意到,且, 则.② 又点D在直线MN上, ∴y=k(x-1),代入②式得:x=4, 因为弦AB的中点D在(1)所给椭圆C内, 故-2<x<2,这与x=4矛盾. 所以所求这组正实数不存在.(11分) 当直线MN的斜率不存在时,直线MN的方程为x=1, 则此时y1=y2,x1+x2=2, 代入①式得x1-x2=0,这与A,B是不同两点矛盾. 综上,所求的这组正实数不存在.(12分)
复制答案
考点分析:
相关试题推荐
在直角坐标系xOy中,点M到F1manfen5.com 满分网、F2manfen5.com 满分网的距离之和是4,点M的轨迹C与x轴的负半轴交于点A,不过点A的直线l:y=kx+b与轨迹C交于不同的两点P和Q.
(1)求轨迹C的方程;
(2)当manfen5.com 满分网时,求k与b的关系,并证明直线l过定点.
查看答案
已知定点A(0,-1),点B在圆F:x2+(y-1)2=16上运动,F为圆心,线段AB的垂直平分线交BF于P.
(I)求动点P的轨迹E的方程;若曲线Q:x2-2ax+y2+a2=1被轨迹E包围着,求实数a的最小值.
(II)已知M(-2,0)、N(2,0),动点G在圆F内,且满足|MG|•|NG|=|OG|2,求manfen5.com 满分网的取值范围.

manfen5.com 满分网 查看答案
已知椭圆的中心在原点,焦点F在y轴的非负半轴上,点F到短轴端点的距离是4,椭圆上的点到焦点F距离的最大值是6.
(Ⅰ)求椭圆的标准方程和离心率e;
(Ⅱ)若F′为焦点F关于直线y=manfen5.com 满分网的对称点,动点M满足manfen5.com 满分网=e,问是否存在一个定点A,使A到点A的距离为定值?若存在,求出点A的坐标及此定值;若不存在,请说明理由.
查看答案
已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2,点(1,manfen5.com 满分网)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为manfen5.com 满分网,求以F2为圆心且与直线l相切的圆的方程.
查看答案
已知抛物线C的顶点在坐标原点,焦点在x轴上,P(2,0)为定点.
(Ⅰ)若点P为抛物线的焦点,求抛物线C的方程;
(Ⅱ)若动圆M过点P,且圆心M在抛物线C上运动,点A、B是圆M与y轴的两交点,试推断是否存在一条抛物线C,使|AB|为定值?若存在,求这个定值;若不存在,说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.