满分5 > 高中数学试题 >

已知椭圆(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切...

已知椭圆manfen5.com 满分网(a>b>0)的离心率为manfen5.com 满分网,以原点为圆心,椭圆的短半轴为半径的圆与直线manfen5.com 满分网相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P(4,0),M,N是椭圆C上关于x轴对称的任意两个不同的点,连接PN交椭圆C于另一点E,求直线PN的斜率的取值范围;
(Ⅲ)在(Ⅱ)的条件下,证明直线ME与x轴相交于定点.
(Ⅰ)由题意知,所以a2=4b2,由此可知椭圆C的方程为. (Ⅱ)由题意知直线PN的斜率存在,设直线PN的方程为y=k(x-4).由题设得(4k2+1)x2-32k2x+64k2-4=0.由此入手可知直线PN的斜率的取值范围是:. (Ⅲ)设点N(x1,y1),E(x2,y2),则M(x1,-y1).直线ME的方程为.令y=0,得.由此入手可知直线ME与x轴相交于定点(1,0). 【解析】 (Ⅰ)由题意知, 所以,即a2=4b2,∴a=2b 又因为,∴a=2,故椭圆C的方程为.(4分) (Ⅱ)由题意知直线PN的斜率存在,设直线PN的方程为y=k(x-4). 由得(4k2+1)x2-32k2x+64k2-4=0.①(6分) 由△=(-32k2)2-4(4k2+1)(64k2-4)>0,得12k2-1<0,∴(8分) 又k=0不合题意,所以直线PN的斜率的取值范围是:.(9分) (Ⅲ)设点N(x1,y1),E(x2,y2),则M(x1,-y1). 直线ME的方程为.令y=0,得.(11分) 将y1=k(x1-4),y2=k(x2-4)代入整理,得.② 由①得,代入②整理,得x=1.(13分) 所以直线ME与x轴相交于定点(1,0).(14分)
复制答案
考点分析:
相关试题推荐
已知圆M:(x-m)2+(y-n)22及定点N(1,0),点P是圆M上的动点,点Q在NP上,点G在MP上,且满足manfen5.com 满分网=2manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网=0.
(Ⅰ)若m=-1,n=0,r=4,求点G的轨迹C的方程;
(Ⅱ)若动圆M和(Ⅰ)中所求轨迹C相交于不同两点A、B,是否存在一组正实数m,n,r使得直线MN垂直平分线段AB,若存在,求出这组正实数;若不存在,说明理由.
查看答案
在直角坐标系xOy中,点M到F1manfen5.com 满分网、F2manfen5.com 满分网的距离之和是4,点M的轨迹C与x轴的负半轴交于点A,不过点A的直线l:y=kx+b与轨迹C交于不同的两点P和Q.
(1)求轨迹C的方程;
(2)当manfen5.com 满分网时,求k与b的关系,并证明直线l过定点.
查看答案
已知定点A(0,-1),点B在圆F:x2+(y-1)2=16上运动,F为圆心,线段AB的垂直平分线交BF于P.
(I)求动点P的轨迹E的方程;若曲线Q:x2-2ax+y2+a2=1被轨迹E包围着,求实数a的最小值.
(II)已知M(-2,0)、N(2,0),动点G在圆F内,且满足|MG|•|NG|=|OG|2,求manfen5.com 满分网的取值范围.

manfen5.com 满分网 查看答案
已知椭圆的中心在原点,焦点F在y轴的非负半轴上,点F到短轴端点的距离是4,椭圆上的点到焦点F距离的最大值是6.
(Ⅰ)求椭圆的标准方程和离心率e;
(Ⅱ)若F′为焦点F关于直线y=manfen5.com 满分网的对称点,动点M满足manfen5.com 满分网=e,问是否存在一个定点A,使A到点A的距离为定值?若存在,求出点A的坐标及此定值;若不存在,请说明理由.
查看答案
已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2,点(1,manfen5.com 满分网)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为manfen5.com 满分网,求以F2为圆心且与直线l相切的圆的方程.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.