满分5 > 高中数学试题 >

已知椭圆C过点是椭圆的左焦点,P、Q是椭圆C上的两个动点,且|PF|、|MF|、...

已知椭圆C过点manfen5.com 满分网是椭圆的左焦点,P、Q是椭圆C上的两个动点,且|PF|、|MF|、|QF|成等差数列.
(1)求椭圆C的标准方程;
(2)求证:线段PQ的垂直平分线经过一个定点A.
(1)设椭圆C的方程为,由已知列出关于a,b的方程组,解之即得椭圆的标准方程为; (2)先设P(x1,y1),Q(x2,y2),2|MF|=|PE|+|QF|,得出x1+x2=2,下面对x1与x2关系进行分类讨论:①当x1≠x2时,②当x1=x2时,分别求得线段PQ的中垂线方程,看它是否经过一个定点A. 【解析】 (1)设椭圆C的方程为,由已知, 得,解得 所以椭圆的标准方程为, (2)证明:设P(x1,y1),Q(x2,y2),由椭圆的标准方程为, 可知|PF|=== 同理|OF|=,|MF|=, ∵2|MF|=|PE|+|QF|,∴,∴x1+x2=2, ①当x1≠x2时,由,得x12-x22+2(y12-y22)=0, ∴ 设线段PQ的中点为N(1,n),由, 得线段PQ的中垂线方程为y-n=2n(x-1) ∴(2x-1)n-y=0,该直线恒过一定点A(,0), ②当x1=x2时,P(1,-),Q(1,)或P(1,),Q(1,-) 线段PQ的中垂线是x轴,也过点A(,0), ∴线段PQ的中垂线过点A(,0).
复制答案
考点分析:
相关试题推荐
已知椭圆的一个顶点为A(0,-1),焦点在x轴上.若右焦点到直线manfen5.com 满分网的距离为3.
(1)求椭圆的方程;
(2)设椭圆与直线y=kx+m(k≠0)相交于不同的两点M、N.当|AM|=|AN|时,求m的取值范围.
查看答案
某公司准备在门前建造一个长轴为20米,短轴长为16米的椭圆形喷水池.在长轴上的M1、M2处设计两个喷水头,使喷出的水花形成有相等半径的⊙M1与⊙M2,且⊙M1与⊙M2外切,两圆均与椭圆内切.试确定点M1与M2的位置及其半径.

manfen5.com 满分网 查看答案
椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,椭圆与直线x+2y+8=0相交于点P,Q,且manfen5.com 满分网,求椭圆的方程.
查看答案
双曲线与椭圆manfen5.com 满分网有相同焦点,且经过点manfen5.com 满分网
(1)求双曲线的方程;
(2)求双曲线的离心率.
查看答案
如图,以AB为直径的圆有一内接梯形ABCD,且AB∥CD.若双曲线C1以A、B为焦点,且过C、D两点,则当梯形的周长最大时,双曲线的离心率为    
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.