满分5 > 高中数学试题 >

如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2,E、F分别是A...

manfen5.com 满分网如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2manfen5.com 满分网,E、F分别是AB、PD的中点.
(1)求证:AF∥平面PCE;
(2)求证:平面PCE⊥平面PCD;
(3)求四面体PEFC的体积.
(1)设G为PC的中点,连接FG,EG,根据中位线定理得到FGCD,AECD,进而可得到AF∥GE,再由线面平行的判定定理可证明AF∥平面PCE,得证. (2)根据PA=AD=2可得到AF⊥PD,再由线面垂直的性质定理可得到PA⊥CD,然后由AD⊥CD结合线面垂直的判定定理得到CD⊥平面PAD,同样得到GE⊥平面PCD,再由面面垂直的判定定理可得证. (3)先由(2)可得知EG为四面体PEFC的高,进而求出S△PCF,根据棱锥的体积公式可得到答案. 【解析】 (1)证明:设G为PC的中点,连接FG,EG, ∵F为PD的中点,E为AB的中点, ∴FGCD,AECD ∴FGAE,∴AF∥GE ∵GE⊂平面PEC, ∴AF∥平面PCE;   (2)证明:∵PA=AD=2,∴AF⊥PD 又∵PA⊥平面ABCD,CD⊂平面ABCD, ∴PA⊥CD,∵AD⊥CD,PA∩AD=A, ∴CD⊥平面PAD, ∵AF⊂平面PAD,∴AF⊥CD. ∵PD∩CD=D,∴AF⊥平面PCD, ∴GE⊥平面PCD, ∵GE⊂平面PEC, ∴平面PCE⊥平面PCD; (3)由(2)知,GE⊥平面PCD, 所以EG为四面体PEFC的高, 又GF∥CD,所以GF⊥PD, EG=AF=,GF=CD=, S△PCF=PD•GF=2. 得四面体PEFC的体积V=S△PCF•EG=.
复制答案
考点分析:
相关试题推荐
设m、n是不同的直线,α、β、γ是不同的平面,有以下四个命题:
(1)manfen5.com 满分网
(2)manfen5.com 满分网
(3)manfen5.com 满分网
(4)manfen5.com 满分网
其中假命题有     查看答案
设有直线m、n和平面α、β,下列四个命题中,正确的是( )
A.若m∥α,n∥α,则m∥n
B.若m⊂α,n⊂α,m∥β,n∥β,则α∥β
C.若α⊥β,m⊂α,则m⊥β
D.若α⊥β,m⊥β,m⊄α,则m∥α
查看答案
现有一个长方体水箱,从水箱里面量得它的深是30cm,底面的长是25cm,宽是20cm.设0<a≤8,水箱里盛有深为a cm的水,若往水箱里放入棱长为10cm的立方体铁块,则水深为( )
A.2cm
B.10cm
C.(a+2)cm
D.manfen5.com 满分网acm
查看答案
已知a、b为直线,α、β为平面.在下列四个命题中,
①若a⊥α,b⊥α,则a∥b;  ②若 a∥α,b∥α,则a∥b;
③若a⊥α,a⊥β,则α∥β;   ④若α∥b,β∥b,则α∥β.
正确命题的个数是( )
A.1
B.3
C.2
D.0
查看答案
已知直线l及两个平面α、β,下列命题正确的是( )
A.若l∥α,l∥β,则α∥β
B.若l∥α,l∥β,则α⊥β
C.若l⊥α,l⊥β,则α∥β
D.若l⊥α,l⊥β,则α⊥β
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.