满分5 > 高中数学试题 >

以下四个命题中,正确命题的个数是( ) ①不共面的四点中,其中任意三点不共线; ...

以下四个命题中,正确命题的个数是( )
①不共面的四点中,其中任意三点不共线;
②若点A、B、C、D共面,点A、B、C、E共面,则A、B、C、D、E共面;
③若直线a、b共面,直线a、c共面,则直线b、c共面;
④依次首尾相接的四条线段必共面.
A.0
B.1
C.2
D.3
对于①可利用反证法进行说明,而②从条件看出两平面有三个公共点A、B、C,但是若A、B、C共线,则结论不正确了,根据共面不具有传递性可判定③的正确性,对于④,空间四边形的四个定点就不共面即可判定是假命题. 【解析】 ①正确,可以用反证法证明,假设任意三点共线,则四个点必共面,与不共面的四点矛盾; ②从条件看出两平面有三个公共点A、B、C,但是若A、B、C共线,则结论不正确; ③不正确,共面不具有传递性,若直线a、b共面,直线a、c共面,则直线b、c可能异面 ④不正确,因为此时所得的四边形四条边可以不在一个平面上,空间四边形的四个定点就不共面. 故选:B
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=manfen5.com 满分网,BC=1,PA=2,E为PD的中点.
(Ⅰ)求直线AC与PB所成角的余弦值;
(Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离.
查看答案
如图,四棱锥P-ABCD中,底面ABCD是平行四边形,P在平面ABCD上的射影为G,且G在AD上,且AG=manfen5.com 满分网GD,BG⊥GC,GB=GC=2,E是BC的中点,四面体P-BCG的体积为manfen5.com 满分网
(Ⅰ)求异面直线GE与PC所成的角余弦值;
(Ⅱ)求点D到平面PBG的距离;
(Ⅲ)若F点是棱PC上一点,且DF⊥GC,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
如图,在四棱锥P-ABCD中,ABCD是矩形,PA⊥平面ABCD,manfen5.com 满分网,点F是PD的中点,点E在CD上移动.
(1)求三棱锥E-PAB体积;
(2)当点E为CD的中点时,试判断EF与平面PAC的关系,并说明理由;
(3)求证:PE⊥AF.

manfen5.com 满分网 查看答案
如图,在直三棱柱ABC-A1B1C1中,AC=3,AB=5,cos∠BAC=manfen5.com 满分网
(1)求证:BC⊥AC1
(2)若D是AB的中点,求证:AC1∥平面CDB1

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2manfen5.com 满分网,E、F分别是AB、PD的中点.
(1)求证:AF∥平面PCE;
(2)求证:平面PCE⊥平面PCD;
(3)求四面体PEFC的体积.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.