满分5 > 高中数学试题 >

如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC...

如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3.
(1)设点O是AB的中点,证明:OC∥平面A1B1C1
(2)求二面角B-AC-A1的大小;
(3)求此几何体的体积.

manfen5.com 满分网
(1)由题意及图形,利用直三棱柱的特点,因为O为中点连接OD,由题意利用借助线面垂直的判定定理证明OC∥平面A1B1C1; (2)由题意利用三垂线定理找到二面角的平面角,在三角形中进行求解二面角的大小; (3)由题意及图形利用体积分割的方法,把不规则的几何体分割成两个规则的几何体,利用相应的体积公式进行求解. (1)证明:作OD∥AA1交A1B1于D,连C1D. 则OD∥BB1∥CC1. 因为O是AB的中点, 所以OD=. 则ODC1C是平行四边形,因此有OC∥C1D.C1D⊂平面C1B1A1且OC⊄平面C1B1A1, 则OC∥面A1B1C1. (2)如图,过B作截面BA2C2∥面A1B1C1,分别交AA1,CC1于A2,C2. 作BH⊥A2C2于H,连CH. 因为CC1⊥面BA2C2,所以CC1⊥BH,则BH⊥平面A1C. 又因为AB=,BC=,AC=. 所以BC⊥AC,根据三垂线定理知CH⊥AC,所以∠BCH就是所求二面角的平面角. 因为BH=,所以sin∠BCH=,故∠BCH=30°, 即:所求二面角的大小为30°. (3)因为BH=,所以=.=•2=1. 所求几何体体积为=.
复制答案
考点分析:
相关试题推荐
如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1=1.求证:E,B,F,D1四点共面;
manfen5.com 满分网
查看答案
如图,在六面体ABCD-A1B1C1D1中,四边形ABCD是边长为2的正方形,四边形A1B1C1D1是边长为1的正方形,DD1⊥平面A1B1C1D1,DD1⊥平面ABCD,DD1=2.
(Ⅰ)求证:A1C1与AC共面,B1D1与BD共面;
(Ⅱ)求证:平面A1ACC1⊥平面B1BDD1;
(Ⅲ)求二面角A-BB1-C的大小(用反三角函数值圾示).

manfen5.com 满分网 查看答案
在平面上,两条直线的位置关系有相交、平行、重合三种.已知α,β是两个相交平面,空间两条直线l1,l2在α上的射影是直线S1,S2,l1,l2在β上的射影是直线t1,t2.用S1与S2,t1与t2的位置关系,写出一个总能确定l1与l2是异面直线的充分条件:    查看答案
设α、β、r为平面,m、n、l为直线,以下四组条件:①α⊥β,α∩β=l,m⊥l②α∩r=m,α⊥r,β⊥r;③α⊥r,β⊥r,m⊥α;④n⊥αn⊥β,m⊥α;可以作为m⊥β的一个充分条件是    查看答案
MN是两条互相垂直的异面直线a、b的公垂线段,点P是线段MN上除M,N外一动点,若点A是a上不同于公垂线垂足的一点,点B是b上不同于公垂线垂足的一点,△APB是( )
A.锐角三角形
B.钝角三角形
C.直角三角形
D.以上均有可能
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.